切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2014, Vol. 03 ›› Issue (01) : 31 -36. doi: 10.3877/cma.j.issn.2095-3216.2014.01.008

专题论坛

基因组编辑技术TALENs 研究进展及应用
崔敬1, 杜轩1, 白雪源1,()   
  1. 1.100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 出版日期:2014-02-15
  • 通信作者: 白雪源
  • 基金资助:
    国家重点基础研究发展计划(2011CBA01003)

Research progress and application of genome editing technique: transcription activator-like effector nucleases (TALENs)

Jing Cui1, Xuan Du1, Xueyuan Bai1,()   

  1. 1.Department of Nephrology,Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing 100853, China
  • Published:2014-02-15
  • Corresponding author: Xueyuan Bai
引用本文:

崔敬, 杜轩, 白雪源. 基因组编辑技术TALENs 研究进展及应用[J/OL]. 中华肾病研究电子杂志, 2014, 03(01): 31-36.

Jing Cui, Xuan Du, Xueyuan Bai. Research progress and application of genome editing technique: transcription activator-like effector nucleases (TALENs)[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2014, 03(01): 31-36.

基因组编辑技术转录激活因子样效应物核酸酶(TALENs)成为多个不同生物体和细胞中基因修饰研究的重要工具。 转录激活因子样效应物(TALEs)通过诱导DNA 双链断裂激活在特定位点的易出错的非同源末端连接(NHEJ)或同源引导的修复(HDR),从而增加了基因修饰的效率。本文主要是总结TALENs 的发展及今后的应用。

The genome editing technique,transcription activator-like effector nucleases (TALENs),has become an important tool for research on gene modification in many different organisms and cell types.Transcription activator-like effectors (TALEs) can increase the efficiency of genetic modifications by induction of DNA double-strand breaks which in turn activate the error-prone non-homologous end joining(NHEJ) or homology-directed repair (HDR) at specific genomic locations. Here, we have reviewed the development of TALENs and provided some perspectives on the future application of this technology.

图1 将转录激活样效应因子蛋白构建成转录激活样效应因子蛋白核酸酶示意图 注: NLS 为核定位信号; AD 为转录激活结构域;RVD 为重复可变双残基
图2 细胞通过同源重组的方式修复示意图 注:TALENs 为转录激活因子样效应物核酸酶;Left TALENs 为识别突变位点3'上游DNA 序列TALENs 质粒;Right TALENs 为识别突变位点5'下游DNA 序列TALENs 质粒;NHEJ 为非同源末端连接;HR 为同源重组
1
Urnov FD, Urnov FD, Rebar EJ, et al. Genome editing with engineered zinc finger nucleases [J]. Nat Rev Genet, 2010, 11(9):636-646.
2
Carroll D. Genome engineering with zinc-finger nucleases [J].Genetics,2011,188(4):773-782.
3
Wyman C, Kanaar R. DNA double-strand break repair: all's well that ends well [J]. Annu Rev Genet,2006,40:363-383.
4
Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors [J]. Science, 2009,326(5959):1509-1512.
5
Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors [J]. Science,2009,326(5959):1501.
6
Mak AN, Bradley P, Cernadas RA, et al. The crystal structure of TAL effector PthXo1 bound to its DNA target [J]. Science, 2012,335(6069):716-719.
7
Deng D, Yan C,Pan X,et al. Structural basis for sequence-specific recognition of DNA by TAL effectors [J]. Science, 2012, 335(6069):720-723.
8
Sanjana NE, Sanjana NE, Cong L, et al. A transcription activatorlike effector toolbox for genome engineering [J]. Nat Protoc,2012,7(1):171-192.
9
Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting [J]. Nucleic Acids Res,2011,39(12): e82.
10
Reyon D, Tsai SQ, Khayter C, et al. FLASH assembly of TALENs for high throughput genome editing [J]. Nat Biotechnol, 2012, 30(10):460-465.
11
Briggs AW, Rios X, Chari R, et al. Iterative capped assembly:rapid andscalable synthesis of repeat-module DNA such as TAL effectors from individual monomers [J]. Nucleic Acids Res, 2012,40(15): e117.
12
Schmid-Burgk JL, Schmidt T, Kaiser V, et al. A ligationindependent cloning technique for high-throughput assembly of transcription activator like effector genes[J]. Nat Biotechnol,2013,31(1):76-81.
13
Orlando SJ, Santiago Y, DeKelver RC, et al. Zinc-finger nucleasedriven targeted integration into mammalian genomes using donors with limited chromosomal homology [J]. Nucleic Acids Res, 2010, 38(15): e152.
14
Chen F, Pruett-Miller SM, Huang Y, et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases [J].Nat Methods,2011,8(9):753-755.
15
Santiago Y, Chan E, Liu PQ, et al. Targeted gene knockout in mammalian cellsby using engineered zinc-finger nucleases [J]. Proc Natl Acad Sci USA,2008,105(15):5809-5814.
16
Lee HJ, Kim E, Kim JS, et al. Targeted chromosomal deletions in human cells using zinc finger nucleases[J]. Genome Res,2010,20(1):81-89.
17
Söllü C, Pars K, Cornu TI, et al. Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion [J]. Nucleic Acids Res,2010,38(22):8269-8276.
18
Sanyal A, Lajoie BR, Jain G, et al. The long-range interaction landscape of gene promoters [J]. Nature,2012,489(7414):109-113.
19
Gutschner T, Baas M, Diederichs S,et al. Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases [J]. Genome Res, 2011, 21(11):1944-1954.
20
ENCODE Project Consortium, Bernstein BE, Birney E, et al. An integrated encyclopedia of DNA elements in the human genome [J].Nature,2012,489(7414):57-74.
21
Christian M, Cermak T, Doyle EL, et al. Targeting DNA doublestrand breaks with TAL effector nucleases[J]. Genetics,2010,186(2):757-761.
22
Mussolino C, Morbitzer R, Lütge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity [J]. Nucleic Acids Res,2011,39(21):9283-9293.
23
Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing [J]. Nat Biotechnol,2011,29(2):143-148.
24
Zhang F, Cong L, Lodato S, et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription [J]. Nat Biotechnol,2011,29(2):149-153.
25
Mercer AC, Gaj T, Fuller RP, et al. Chimeric TALE recombinases with programmable DNA sequence specificity [J]. Nucleic Acids Res,2012,40(21):11163-11172.
26
Doyon Y, McCammon JM, Miller JC, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases [J]. Nat Biotechnol,2008,26(6):702-708.
27
Sander JD, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebra fish cells using engineered TALENs [ J]. Nat Biotechnol,2011,29(8):697-698.
28
Meng X, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nuclease [J]. Nat Biotechnol,2008,26(6):695-701.
29
Tesson L, Usal C, Ménoret S, et al. Knockout rats generated by embryo microinjection of TALENs [J]. Nat Biotechnol, 2011, 29(8):695-696.
30
GeurtsAM, Cost GJ, Freyvert Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases [J]. Science, 2009, 325(5939):433.
31
Bibikova M, Beumer K, Trautman JK, et al. Enhancing gene targeting with designed zinc finger nucleases [J]. Science, 2003,300(5620):764.
32
Bibikova M, Golic M, Golic KG, et al. Targeted chromosomal cleavage and mutagenesis in drosophila using zinc-finger nucleases[J]. Genetics,2002,161(3):1169-1175.
33
Morton J, Davis MW, Jorgensen EM, et al. Induction and repair of zinc-finger nuclease targeted double-strand breaks in caenorhabditis elegans somatic cells [J]. Proc Natl Acad Sci USA, 2006, 103(44):16370-16375.
34
Merlin C, Beaver LE, Taylor OR, et al. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases[J]. Genome Res,2013,23(1):159-168.
35
Young JJ, Cherone JM, Doyon Y, et al. Efficient targeted gene disruption in the soma and germ line of the frog Xenopustropicalis using engineered zinc finger nucleases [J]. Proc Natl Acad Sci.USA,2011,108(17):7052-7057.
36
Carlson DF, Tan W, Lillico SG, et al. Efficient TALEN-mediated gene knockout in livestock [J]. Proc Natl Acad Sci USA, 2012,109(43):17382-17387.
37
Hauschild J, Petersen B, Santiago Y, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases [J]. Proc Natl Acad Sci USA,2011,108(29):12013-12017.
38
Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs [J]. Science,2011,333(6040):307.
39
Bedell VM, Wang Y, Campbell JM, et al. In vivo genome editing using a high efficiency TALEN system [J]. Nature, 2012, 491(7422):114-118.
40
Zu Y, Tong X, Wang Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish [J]. Nat Methods,2013,10(4):329-331.
41
Shukla VK, Doyon Y, Miller JC, et al. Precise genome modification in the crop species Zea mays using zinc-finger nuclease[J]. Nature,2009,459(7245):437-441.
42
Townsend JA, Wright DA, Winfrey RJ, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases[J]. Nature,2009,459(7245):442-445.
43
Li T, Liu B, Spalding MH, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice [J]. Nat Biotechnol,2012,30(5):390-392.
44
Holkers M, Maggio I, Liu J, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells [J]. Nucleic Acids Res,2013,41(5): e63.
45
Li H, Haurigot V, Doyon Y, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia [J]. Nature, 2011,475(7355):217-221.
46
Ellis BL, Hirsch ML, Porter SN, et al. Zinc-finger nucleasemediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration -approved drugs[J].Gene Ther,2013,20(1):35-42.
47
Handel EM, Gellhaus K, Khan K, et al. Versatile and efficient genome editing inhuman cells by combining zinc-finger nucleases with adeno-associated viral vectors [J]. Hum Gene Ther,2012,23(3):321-329.
48
Miller JC, Holmes MC, Wang J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing [J]. Nat Biotechnol,2007,25(7):778-785.
49
Szczepek M, Brondani V, Büchel J, et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases [J]. Nat Biotechnol,2007,25(7):786-793.
50
Doyon Y, Vo TD, Mendel MC, et al. Enhancing zinc-fingernuclease activity with improved obligate heterodimeric architectures[J]. Nat Methods,2011,8(1):74-79.
51
Guo J, Gaj T, Barbas CF. Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases[J]. J Mol Biol,2010,400(1):96-107.
52
Gaj T, Mercer AC, Sirk SJ, et al. A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells [J]. Nucleic Acids Res,2013,41(6):3937-3946.
53
Gersbach CA, Gaj T, Gordley RM, et al. Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase [J]. Nucleic Acids Res,2011,39(17):7868-7878.
54
Gaj T, Mercer AC, Gersbach CA, et al. Structure-guided reprogramming of serine recombinase DNA sequence specificity [J].Proc Natl Acad Sci USA,2011,108(2):498-503.
55
Yant SR, Huang Y, Akache B, et al. Site-directed transposon integration in human cells [J]. Nucleic Acids Res, 2007, 35(7):e50.
56
Owens JB, Urschitz J, Stoytchev I, et al. Chimeric piggyBac transposases for genomic targeting in human cells[J]. Nucleic Acids Res,2012,40(14):6978-6991.
57
Zou J, Mali P, Huang X, et al. Site-specific gene correction of a point mutation inhuman iPS cells derived from an adult patient with sickle cell disease [J]. Blood,2011,118(17):4599-4608.
58
Sebastiano V, Maeder ML, Angstman JF, et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases [J].Stem Cells,2011,29(11):1717-1726.
59
Yusa K, Rashid ST, Strick-Marchand H, et al. Targeted gene correction of alpha1-anti trypsin deficiency in induced pluripotent stem cells [J]. Nature,2011,478(7369):391-394.
60
Soldner F, Laganière J, Cheng AW, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations [J]. Cell,2011,146(2):318-331.
61
Perez EE, Wang J, Miller JC, et al. Establishment of HIV-1 resistance in CD4 + T cells by genome editing using zinc-finger nucleases [J]. Nat Biotechnol,2008,26(7):808-816.
62
Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo [J]. Nat Biotechnol, 2010, 28(8): 839-847.
63
Voit RA, McMahon MA, Sawyer SL,et al. Generation of an HIV resistant T-cell lineby targeted “stacking” of restriction factors [J].Mol Ther,2013,21(4):786-795.
64
De Kelver RC, Choi VM, Moehle EA, et al. Functional genomics,proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome [J]. Genome Res,2010,20(8):1133-1142.
65
Lombardo A, Cesana D, Genovese P, et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer [J]. Nat Methods,2011,8(10):861-869.
66
Low BE, Krebs MP, Joung JK, et al. Correction of Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN-mediated homology-directed repair [J]. Invest Ophthalmol Vis Sci,2014,55(1):387-395.
67
Dupuy A, Valton J, Leduc S, et al. Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALENTM[J]. PLoS One,2013,8(11): e78678.
68
Ma N, Liao B, Zhang H, et al. Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free βthalassemia induced pluripotent stem cells [J]. J Biol Chem,2013,288(48):34671-34679.
69
Bacman SR,Williams SL, Pinto M, et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs [J]. Nat Med,2013,19(9):1111-1113.
70
Bloom K,Ely A,Mussolino C,et al. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases [J]. Mol Ther, 2013, 21(10):1889-1897.
71
Ousterout DG, Perez-Pinera P, Thakore PI, et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients [J]. Mol Ther,2013,21(9):1718-1726.
72
Osborn MJ, Starker CG, McElroy AN, et al. TALEN-based gene correction for epidermolysis bullosa [J]. Mol Ther, 2013, 21(6):1151-1159.
73
Piganeau M, Ghezraoui H, De Cian A, et al. Cancer translocations in human cells induced by zinc finger and TALE nucleases [J].Genome Res,2013,23(7):1182-1193.
[1] 陈鹏飞, 聂惠蓉, 戴一凡, 蔡志明, 牟丽莎. 基因修饰猪在异种器官移植中的研究进展[J/OL]. 中华移植杂志(电子版), 2017, 11(02): 119-124.
[2] 黄乙涓, 黄强, 吕欧. 高剂量pSin慢病毒载体介导的转染对诱导性多能干细胞影响的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2017, 07(03): 125-130.
阅读次数
全文


摘要