切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2015, Vol. 04 ›› Issue (05) : 261 -264. doi: 10.3877/cma.j.issn.2095-3216.2015.05.009

所属专题: 文献

综述

干细胞在肾脏损伤中应用的研究进展
耿晓东1, 吴镝1,()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 出版日期:2015-10-28
  • 通信作者: 吴镝
  • 基金资助:
    国家自然科学基金面上项目(31170810); 海南省医药卫生科研项目(13A110006)

Advances of researches on application of stem cells in renal injury

Xiaodong Geng1, Di Wu1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Published:2015-10-28
  • Corresponding author: Di Wu
  • About author:
    Corresponding author: Wu Di, Email:
引用本文:

耿晓东, 吴镝. 干细胞在肾脏损伤中应用的研究进展[J/OL]. 中华肾病研究电子杂志, 2015, 04(05): 261-264.

Xiaodong Geng, Di Wu. Advances of researches on application of stem cells in renal injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2015, 04(05): 261-264.

终末期肾病加剧了世界医疗资源的负担。现在迫切需要有效的策略,即通过肾脏再生来预防进一步的肾损伤以及恢复肾功能。除防止肾脏损伤外,再生受损的肾组织对于延缓慢性肾脏病发展到终末期肾衰竭也是非常重要的。肾脏再生的最新进展包括了胚胎干细胞向肾脏细胞定向诱导分化;肾小管损伤后的增殖加强;内皮祖细胞和肾祖细胞在肾损伤修复中的作用;采用间充质干细胞治疗肾病和肾脏组织工程等。然而就目前的研究,在上述过程中依然存在一些争议,如成体上皮干细胞究竟是不是存在;如何探寻并研究最好的肾损伤治疗策略以及如何以最佳的方式使用间充质干细胞来预防肾损伤等。本文总结了干细胞和再生方法在肾损伤中应用研究的最新进展。

End-stage renal disease has aggravated the burden of the world′s medical resources. There is an urgent need for effective strategies to make use of the kidney regeneration for prevention of further kidney damage and recovery of kidney function. In addition to preventing kidney injury, regenerating damaged renal tissue is as important as retarding the progression of chronic kidney disease to end-stage renal disease. Recent progress in regenerative nephrology included the directed differentiation of embryonic stem cells to kidney fates, the increased proliferative capacity of tubules after injury, roles of endothelial progenitor cells and renal progenitor cells in repair of kidney damage, use of mesenchymal stem cells in treatment of kidney diseases, and tissue engineering approaches to renal replacement. However, there are still some disputes, such as the existence of adult epithelium stem cells, exploration of and research on the best treatment strategies for kidney injury, and the best ways to use mesenchymal stem cells for prevention of kidney damage. This review summarizes the most recent advances in researches on use of stem cells and regenerative approaches in treatment of kidney injury.

1
Little MH, McMahon AP. Mammalian kidney development: principles, progress, and projections [J]. Cold Spring Harb Perspect Biol, 2012, 4(5): 1-18.
2
Kobayashi A, Valerius MT, Mugford JW, et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development [J]. Cell Stem Cell, 2008, 3(2): 169-181.
3
Guo JK, Cantley LG. Cellular maintenance and repair of the kidney [J]. Annu Rev Physiol, 2010, 72: 357-376.
4
Lindgren D, Bostrom AK, Nilsson K, et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules [J]. Am J Pathol, 2011, 178(2): 828-837.
5
Barker N, Rookmaaker MB, Kujala P, et al. Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development [J]. Cell Rep, 2012, 2(3): 540-552.
6
Humphreys BD, Valerius MT, Kobayashi A, et al. Intrinsic epithelial cells repair the kidney after injury [J]. Cell Stem Cell, 2008, 2(3): 284-291.
7
Vogetseder A, Palan T, Bacic D, et al. Proximal tubular epithelial cells are generated by division of differentiated cells in the healthy kidney [J]. Am J Physiol Cell Physiol, 2007, 292(2): C807-C813.
8
Romagnani P, Lasagni L, Remuzzi G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration [J]. Nat Rev Nephrol, 2013, 9(3): 137-146.
9
Romagnani P. Of mice and men: the riddle of tubular regeneration [J]. J Pathol, 2013, 229(5): 641-644.
10
Smeets B, Boor P, Dijkman H, et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration [J]. J Pathol, 2013, 229(5): 645-659.
11
Duffield JS, Park KM, Hsiao LL, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells [J]. J Clin Invest, 2005, 115(7): 1743-1755.
12
Bianco P, Cao X, Frenette PS, et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine [J]. Nat Med, 2013, 19(1): 35-42.
13
Togel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms [J]. Am J Physiol Renal Physiol, 2005, 289(1): F31-F42.
14
Togel FE, Westenfelder C. Kidney protection and regeneration following acute injury: progress through stem cell therapy [J]. Am J Kidney Dis, 2012, 60(6): 1012-1022.
15
Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6 [J]. Cell Stem Cell, 2009, 5(1): 54-63.
16
Bi B, Schmitt R, Israilova M, et al. Stromal cells protect against acute tubular injury via an endocrine effect [J]. J Am Soc Nephrol, 2007, 18(9): 2486-2496.
17
Chen YT, Sun CK, Lin YC, et al. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction [J]. J Transl Med, 2011, 9: 51.
18
Donizetti-Oliveira C, Semedo P, Burgos-Silva M, et al. Adipose tissue-derived stem cell treatment prevents renal disease progression [J]. Cell Transplant, 2012, 21(8): 1727-1741.
19
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells [J]. Proc Natl Acad Sci USA, 1981, 78(12): 7634-7638.
20
Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy [J]. Nature, 2012, 481(7381): 295-305.
21
Batchelder CA, Lee CC, Matsell DG, et al. Renal ontogeny in the rhesus monkey (Macaca mulatta) and directed differentiation of human embryonic stem cells towards kidney precursors [J]. Differentiation, 2009, 78(1): 45-56.
22
Song B, Smink AM, Jones CV, et al. The directed differentiation of human iPS cells into kidney podocytes [J]. PLoS One, 2012, 7(9): e46453.
23
Davies JA, Unbekandt M, Ineson J, et al. Dissociation of embryonic kidney followed by re-aggregation as a method for chimeric analysis [J]. Methods Mol Biol, 2012, 886: 135-146.
24
Mae S, Shono A, Shiota F, et al. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells [J]. Nat Commun, 2013, 4(1): 1367.
25
Hendry CE, Vanslambrouck JM, Ineson J, et al. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors [J]. J Am Soc Nephrol, 2013, 24(9): 1424-1434.
26
Chade AR, Zhu X, Lavi R, et al. Endothelial progenitor cells restore renal function in chronic experimental renovascular disease [J]. Circulation, 2009, 119(4): 547-557.
27
Patschan D, Krupincza K, Patschan S, et al. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning [J]. Am J Physiol Renal Physiol, 2006, 291(1): F176-F185.
28
Hartman HA, Lai HL, Patterson LT. Cessation of renal morphogenesis in mice [J]. Dev Biol, 2007, 310(2): 379-387.
29
Lee PT, Lin HH, Jiang ST, et al. Mouse kidney progenitor cells accelerate renal regeneration and prolong survival after ischemic injury [J]. Stem Cells, 2010, 28(3): 573-584.
30
Ronconi E, Sagrinati C, Angelotti ML, et al. Regeneration of glomerular podocytes by human renal progenitors [J]. J Am Soc Nephrol, 2009, 20(2): 322-332.
31
Humes HD, Weitzel WF, Bartlett RH, et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure [J]. Kidney Int, 2004, 66(4): 1578-1588.
32
Tumlin J, Wali R, Williams W, et al. Efficacy and safety of renal tubule cell therapy for acute renal failure [J]. J Am Soc Nephrol, 2008, 19(5): 1034-1040.
33
Song JJ, Guyette JP, Gilpin SE, et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney [J]. Nat Med, 2013, 19(5): 646-651.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[3] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[4] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[5] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[6] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[7] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[8] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[9] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[10] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[11] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[12] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[13] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[14] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?