切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2015, Vol. 04 ›› Issue (05) : 261 -264. doi: 10.3877/cma.j.issn.2095-3216.2015.05.009

所属专题: 文献

综述

干细胞在肾脏损伤中应用的研究进展
耿晓东1, 吴镝1,()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 出版日期:2015-10-28
  • 通信作者: 吴镝
  • 基金资助:
    国家自然科学基金面上项目(31170810); 海南省医药卫生科研项目(13A110006)

Advances of researches on application of stem cells in renal injury

Xiaodong Geng1, Di Wu1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Published:2015-10-28
  • Corresponding author: Di Wu
  • About author:
    Corresponding author: Wu Di, Email:
引用本文:

耿晓东, 吴镝. 干细胞在肾脏损伤中应用的研究进展[J]. 中华肾病研究电子杂志, 2015, 04(05): 261-264.

Xiaodong Geng, Di Wu. Advances of researches on application of stem cells in renal injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2015, 04(05): 261-264.

终末期肾病加剧了世界医疗资源的负担。现在迫切需要有效的策略,即通过肾脏再生来预防进一步的肾损伤以及恢复肾功能。除防止肾脏损伤外,再生受损的肾组织对于延缓慢性肾脏病发展到终末期肾衰竭也是非常重要的。肾脏再生的最新进展包括了胚胎干细胞向肾脏细胞定向诱导分化;肾小管损伤后的增殖加强;内皮祖细胞和肾祖细胞在肾损伤修复中的作用;采用间充质干细胞治疗肾病和肾脏组织工程等。然而就目前的研究,在上述过程中依然存在一些争议,如成体上皮干细胞究竟是不是存在;如何探寻并研究最好的肾损伤治疗策略以及如何以最佳的方式使用间充质干细胞来预防肾损伤等。本文总结了干细胞和再生方法在肾损伤中应用研究的最新进展。

End-stage renal disease has aggravated the burden of the world′s medical resources. There is an urgent need for effective strategies to make use of the kidney regeneration for prevention of further kidney damage and recovery of kidney function. In addition to preventing kidney injury, regenerating damaged renal tissue is as important as retarding the progression of chronic kidney disease to end-stage renal disease. Recent progress in regenerative nephrology included the directed differentiation of embryonic stem cells to kidney fates, the increased proliferative capacity of tubules after injury, roles of endothelial progenitor cells and renal progenitor cells in repair of kidney damage, use of mesenchymal stem cells in treatment of kidney diseases, and tissue engineering approaches to renal replacement. However, there are still some disputes, such as the existence of adult epithelium stem cells, exploration of and research on the best treatment strategies for kidney injury, and the best ways to use mesenchymal stem cells for prevention of kidney damage. This review summarizes the most recent advances in researches on use of stem cells and regenerative approaches in treatment of kidney injury.

1
Little MH, McMahon AP. Mammalian kidney development: principles, progress, and projections [J]. Cold Spring Harb Perspect Biol, 2012, 4(5): 1-18.
2
Kobayashi A, Valerius MT, Mugford JW, et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development [J]. Cell Stem Cell, 2008, 3(2): 169-181.
3
Guo JK, Cantley LG. Cellular maintenance and repair of the kidney [J]. Annu Rev Physiol, 2010, 72: 357-376.
4
Lindgren D, Bostrom AK, Nilsson K, et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules [J]. Am J Pathol, 2011, 178(2): 828-837.
5
Barker N, Rookmaaker MB, Kujala P, et al. Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development [J]. Cell Rep, 2012, 2(3): 540-552.
6
Humphreys BD, Valerius MT, Kobayashi A, et al. Intrinsic epithelial cells repair the kidney after injury [J]. Cell Stem Cell, 2008, 2(3): 284-291.
7
Vogetseder A, Palan T, Bacic D, et al. Proximal tubular epithelial cells are generated by division of differentiated cells in the healthy kidney [J]. Am J Physiol Cell Physiol, 2007, 292(2): C807-C813.
8
Romagnani P, Lasagni L, Remuzzi G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration [J]. Nat Rev Nephrol, 2013, 9(3): 137-146.
9
Romagnani P. Of mice and men: the riddle of tubular regeneration [J]. J Pathol, 2013, 229(5): 641-644.
10
Smeets B, Boor P, Dijkman H, et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration [J]. J Pathol, 2013, 229(5): 645-659.
11
Duffield JS, Park KM, Hsiao LL, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells [J]. J Clin Invest, 2005, 115(7): 1743-1755.
12
Bianco P, Cao X, Frenette PS, et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine [J]. Nat Med, 2013, 19(1): 35-42.
13
Togel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms [J]. Am J Physiol Renal Physiol, 2005, 289(1): F31-F42.
14
Togel FE, Westenfelder C. Kidney protection and regeneration following acute injury: progress through stem cell therapy [J]. Am J Kidney Dis, 2012, 60(6): 1012-1022.
15
Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6 [J]. Cell Stem Cell, 2009, 5(1): 54-63.
16
Bi B, Schmitt R, Israilova M, et al. Stromal cells protect against acute tubular injury via an endocrine effect [J]. J Am Soc Nephrol, 2007, 18(9): 2486-2496.
17
Chen YT, Sun CK, Lin YC, et al. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction [J]. J Transl Med, 2011, 9: 51.
18
Donizetti-Oliveira C, Semedo P, Burgos-Silva M, et al. Adipose tissue-derived stem cell treatment prevents renal disease progression [J]. Cell Transplant, 2012, 21(8): 1727-1741.
19
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells [J]. Proc Natl Acad Sci USA, 1981, 78(12): 7634-7638.
20
Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy [J]. Nature, 2012, 481(7381): 295-305.
21
Batchelder CA, Lee CC, Matsell DG, et al. Renal ontogeny in the rhesus monkey (Macaca mulatta) and directed differentiation of human embryonic stem cells towards kidney precursors [J]. Differentiation, 2009, 78(1): 45-56.
22
Song B, Smink AM, Jones CV, et al. The directed differentiation of human iPS cells into kidney podocytes [J]. PLoS One, 2012, 7(9): e46453.
23
Davies JA, Unbekandt M, Ineson J, et al. Dissociation of embryonic kidney followed by re-aggregation as a method for chimeric analysis [J]. Methods Mol Biol, 2012, 886: 135-146.
24
Mae S, Shono A, Shiota F, et al. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells [J]. Nat Commun, 2013, 4(1): 1367.
25
Hendry CE, Vanslambrouck JM, Ineson J, et al. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors [J]. J Am Soc Nephrol, 2013, 24(9): 1424-1434.
26
Chade AR, Zhu X, Lavi R, et al. Endothelial progenitor cells restore renal function in chronic experimental renovascular disease [J]. Circulation, 2009, 119(4): 547-557.
27
Patschan D, Krupincza K, Patschan S, et al. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning [J]. Am J Physiol Renal Physiol, 2006, 291(1): F176-F185.
28
Hartman HA, Lai HL, Patterson LT. Cessation of renal morphogenesis in mice [J]. Dev Biol, 2007, 310(2): 379-387.
29
Lee PT, Lin HH, Jiang ST, et al. Mouse kidney progenitor cells accelerate renal regeneration and prolong survival after ischemic injury [J]. Stem Cells, 2010, 28(3): 573-584.
30
Ronconi E, Sagrinati C, Angelotti ML, et al. Regeneration of glomerular podocytes by human renal progenitors [J]. J Am Soc Nephrol, 2009, 20(2): 322-332.
31
Humes HD, Weitzel WF, Bartlett RH, et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure [J]. Kidney Int, 2004, 66(4): 1578-1588.
32
Tumlin J, Wali R, Williams W, et al. Efficacy and safety of renal tubule cell therapy for acute renal failure [J]. J Am Soc Nephrol, 2008, 19(5): 1034-1040.
33
Song JJ, Guyette JP, Gilpin SE, et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney [J]. Nat Med, 2013, 19(5): 646-651.
[1] 沈纵, 魏晨如, 朱邦晖, 包郁露, 伍国胜, 孙瑜. 间充质干细胞治疗吸入性损伤的动物实验研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 180-183.
[2] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[5] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[6] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[7] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[8] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[9] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[10] 陈玉婷, 周影, 陆雅斐, 江滨. 缺氧预处理间充质干细胞的功能及机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 115-120.
[11] 赵子祯, 严紫娟, 王家传. 脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 121-128.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要