切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2016, Vol. 05 ›› Issue (03) : 97 -100. doi: 10.3877/cma.j.issn.2095-3216.2016.03.001

所属专题: 文献

述评

腹膜透析超滤衰竭的诊治策略
倪兆慧1,(), 金海姣1   
  1. 1. 200127 上海交通大学医学院附属仁济医院肾脏科
  • 收稿日期:2016-04-21 出版日期:2016-06-28
  • 通信作者: 倪兆慧

Strategy of diagnosis and treatment for ultrafiltration failure of peritoneal dialysis

Zhaohui Ni1,(), Haijiao Jin1   

  1. 1. Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
  • Received:2016-04-21 Published:2016-06-28
  • Corresponding author: Zhaohui Ni
  • About author:
    Corresponding author: Ni Zhaohui, Email:
引用本文:

倪兆慧, 金海姣. 腹膜透析超滤衰竭的诊治策略[J]. 中华肾病研究电子杂志, 2016, 05(03): 97-100.

Zhaohui Ni, Haijiao Jin. Strategy of diagnosis and treatment for ultrafiltration failure of peritoneal dialysis[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2016, 05(03): 97-100.

超滤衰竭是腹膜透析常见的并发症,是导致腹膜透析失败的重要原因之一。超滤衰竭定义为4.25%葡萄糖透析液留腹4 h后超滤量<400 ml。超滤衰竭根据病理生理机制分为4种类型:Ⅰ型超滤衰竭由于有效腹膜表面积增加导致,Ⅱ型超滤衰竭由于葡萄糖渗透转导作用下降导致,Ⅲ型超滤衰竭由于腹膜有效表面积减少导致,Ⅳ型超滤衰竭由于通过腹腔淋巴系统或局部组织间隙吸收大量水分导致。避免过度使用高浓度葡萄糖透析液、有效防治腹膜透析相关腹膜炎、保护残肾功能、选用生物相容性好的透析液、使用改善腹膜损伤和纤维化药物等是防治超滤衰竭的有益方法。

Ultrafiltration failure is a common complication and an important cause of peritoneal dialysis failure. Ultrafiltration failure is defined as that the net ultrafiltration volume is less than 400 ml after a 4-hour dwell with 4.25% dextrose dialysis solution. According to its pathophysiological mechanisms, the ultrafiltration failure has been divided into 4 types: type 1 ultrafiltration failure is caused by increase of effective peritoneal surface area; type 2 ultrafiltration failure is caused by decrease of osmotic conductance to glucose; type 3 ultrafiltration failure is caused by decrease of effective peritoneal surface area; and type 4 ultrafiltration failure is caused by absorbance of a lot of water through the peritoneal lymphatic system or local tissue gap. Beneficial methods to prevent and treat ultrafiltration failure include rational use of high glucose dialysate, effective prevention and treatment of peritoneal dialysis-related peritonitis, protection of residual renal function, appropriate use of biocompatible dialysates, and application of drugs to improve peritoneal damage and fibrosis.

[1]
Mujais S,Story K. Peritoneal dialysis in the US: evaluation of outcomes in contemporary cohorts[J]. Kidney Int, 2006, 103(70): 21-26.
[2]
Mujais S,Nolph K,Gokal R, et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis[J]. Perit Dial Int, 2000, 20(Suppl 4): S5-S21.
[3]
Flessner MF. The transport barrier in intraperitoneal therapy[J]. Am J Physiol Renal Physiol, 2005, 288(3): F433-F442.
[4]
Teitelbaum I. Ultrafiltration failure in peritoneal dialysis: a pathophysiologic approach[J]. Blood Purif, 2015, 39(1-3): 70-73.
[5]
严豪,方炜,李振元, 等. 可溶性酪氨酸激酶2融合蛋白对尿毒症腹膜透析大鼠腹膜形态和功能的影响[J]. 中华肾脏病杂志, 2010, 26(7): 525-529.
[6]
Goffin E,Combet S,Jamar F, et al. Expression of aquaporin-1 in a long-term peritoneal dialysis patient with impaired transcellular water transport[J]. Am J Kidney Dis, 1999, 33(2): 383-388.
[7]
Aroeira LS,Aguilera A,Sánchez-Tomero JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions[J]. J Am Soc Nephrol, 2007, 18(7): 2004-2013.
[8]
Kinashi H,Ito Y,Mizuno M, et al. TGF-β1 promotes lymphangiogenesis during peritoneal fibrosis[J]. J Am Soc Nephrol, 2013, 24(10): 1627-1642.
[9]
De Alvaro F,Castro MJ,Dapena F, et al. Peritoneal resting is beneficial in peritoneal hyperpermeability and ultrafiltration failure[J]. Adv Perit Dial, 1993, 9: 56.
[10]
Kolesnyk I,Noordzij M,Dekker FW, et al. A positive effect of AⅡ inhibitors on peritoneal membrane function in long-term PD patients[J]. Nephrol Dial Transplant, 2009, 24(1): 272-277.
[11]
La Milia V,Di Filippo S,Crepaldi M, et al. Mini-peritoneal equilibration test: a simple and fast method to assess free water and small solute transport across the peritoneal membrane[J]. Kidney Int, 2005, 68(2): 840-846.
[12]
Stoenoiu MS,Ni J,Verkaeren C, et al. Corticosteroids induce expression of aquaporin-1 and increase transcellular water transport in rat peritoneum[J]. J Am Soc Nephrol, 2003, 14(3): 555-565.
[13]
De Arteaga J,Ledesma F,Garay G, et al. High-dose steroid treatment increases free water transport in peritoneal dialysis patients[J]. Nephrol Dial Transplant, 2011, 26(12): 4142-4145.
[14]
Yool AJ,Morelle J,Cnops Y, et al. AqF026 is a pharmacologic agonist of the water channel aquaporin-1[J]. J Am Soc Nephrol, 2013, 24(7): 1045-1052.
[15]
Kawanishi H,Kawaguchi Y,Fukui H, et al. Encapsulating peritoneal sclerosis in Japan: a prospective, controlled, multicenter study[J]. Am J Kidney Dis, 2004, 44(4): 729-737.
[16]
Vizzardi V,Sandrini M,Zecchini S, et al. Encapsulating peritoneal sclerosis in an Italian center: thirty year experience[J]. J Nephrol, 2016, 29(2): 259-267.
[17]
Hirahara I,Inoue M,Okuda K, et al. The potential of matrix metalloproteinase-2 as a marker of peritoneal injury, increased solute transport, or progression to encapsulating peritoneal sclerosis during peritoneal dialysis-a multicentre study in Japan[J]. Nephrol Dial Transpl, 2007, 22(2): 560-567.
[18]
Balasubramaniam G,Brown EA,Davenport A, et al. The Pan-Thames EPS study: treatment and outcomes of encapsulating peritoneal sclerosis[J]. Nephrol Dial Transpl, 2009, 24(8): 3209-3215.
[19]
Korte MR,Fieren MW,Sampimon DE, et al. Tamoxifen is associated with lower mortality of encapsulating peritoneal sclerosis: results of the Dutch Multicentre EPS Study[J]. Nephrol Dial Transpl, 2011, 26(2): 691-697.
[20]
Hirahara I,Kusano E,Morishita Y, et al. Matrix metalloproteinase-2 as a superior biomarker for peritoneal deterioration in peritoneal dialysis[J]. World J Nephrol, 2016, 5(2): 204-212.
[21]
Dohi K. Surgical techniques for prevention of recurrence after total enterolysis in encapsulating peritoneal sclerosis[J]. Adv Perit Dial, 2008, 24: 51-55.
[22]
Baranowska-Daca E,Torneli J,Popovich RP, et al. Use of bethanechol chloride to increase available ultrafiltration in CAPD[J]. Adv Perit Dial, 1995, 11: 69-72.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[3] 张伟. 牙及牙槽外科:舒适治疗的先锋[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 386-388.
[4] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[5] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[6] 杨瑞洲, 李国栋, 吴向阳. 腹股沟疝术后感染的治疗方法探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 715-719.
[7] 赵立力, 王魁向, 张小冲, 李志远. 血沉与C-反应蛋白比值在假体周围感染中的诊断价值分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 351-355.
[8] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[9] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[10] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[11] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[12] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[13] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[14] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[15] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
阅读次数
全文


摘要