切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2016, Vol. 05 ›› Issue (03) : 97 -100. doi: 10.3877/cma.j.issn.2095-3216.2016.03.001

所属专题: 文献

述评

腹膜透析超滤衰竭的诊治策略
倪兆慧1,(), 金海姣1   
  1. 1. 200127 上海交通大学医学院附属仁济医院肾脏科
  • 收稿日期:2016-04-21 出版日期:2016-06-28
  • 通信作者: 倪兆慧

Strategy of diagnosis and treatment for ultrafiltration failure of peritoneal dialysis

Zhaohui Ni1,(), Haijiao Jin1   

  1. 1. Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
  • Received:2016-04-21 Published:2016-06-28
  • Corresponding author: Zhaohui Ni
  • About author:
    Corresponding author: Ni Zhaohui, Email:
引用本文:

倪兆慧, 金海姣. 腹膜透析超滤衰竭的诊治策略[J/OL]. 中华肾病研究电子杂志, 2016, 05(03): 97-100.

Zhaohui Ni, Haijiao Jin. Strategy of diagnosis and treatment for ultrafiltration failure of peritoneal dialysis[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2016, 05(03): 97-100.

超滤衰竭是腹膜透析常见的并发症,是导致腹膜透析失败的重要原因之一。超滤衰竭定义为4.25%葡萄糖透析液留腹4 h后超滤量<400 ml。超滤衰竭根据病理生理机制分为4种类型:Ⅰ型超滤衰竭由于有效腹膜表面积增加导致,Ⅱ型超滤衰竭由于葡萄糖渗透转导作用下降导致,Ⅲ型超滤衰竭由于腹膜有效表面积减少导致,Ⅳ型超滤衰竭由于通过腹腔淋巴系统或局部组织间隙吸收大量水分导致。避免过度使用高浓度葡萄糖透析液、有效防治腹膜透析相关腹膜炎、保护残肾功能、选用生物相容性好的透析液、使用改善腹膜损伤和纤维化药物等是防治超滤衰竭的有益方法。

Ultrafiltration failure is a common complication and an important cause of peritoneal dialysis failure. Ultrafiltration failure is defined as that the net ultrafiltration volume is less than 400 ml after a 4-hour dwell with 4.25% dextrose dialysis solution. According to its pathophysiological mechanisms, the ultrafiltration failure has been divided into 4 types: type 1 ultrafiltration failure is caused by increase of effective peritoneal surface area; type 2 ultrafiltration failure is caused by decrease of osmotic conductance to glucose; type 3 ultrafiltration failure is caused by decrease of effective peritoneal surface area; and type 4 ultrafiltration failure is caused by absorbance of a lot of water through the peritoneal lymphatic system or local tissue gap. Beneficial methods to prevent and treat ultrafiltration failure include rational use of high glucose dialysate, effective prevention and treatment of peritoneal dialysis-related peritonitis, protection of residual renal function, appropriate use of biocompatible dialysates, and application of drugs to improve peritoneal damage and fibrosis.

[1]
Mujais S,Story K. Peritoneal dialysis in the US: evaluation of outcomes in contemporary cohorts[J]. Kidney Int, 2006, 103(70): 21-26.
[2]
Mujais S,Nolph K,Gokal R, et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis[J]. Perit Dial Int, 2000, 20(Suppl 4): S5-S21.
[3]
Flessner MF. The transport barrier in intraperitoneal therapy[J]. Am J Physiol Renal Physiol, 2005, 288(3): F433-F442.
[4]
Teitelbaum I. Ultrafiltration failure in peritoneal dialysis: a pathophysiologic approach[J]. Blood Purif, 2015, 39(1-3): 70-73.
[5]
严豪,方炜,李振元, 等. 可溶性酪氨酸激酶2融合蛋白对尿毒症腹膜透析大鼠腹膜形态和功能的影响[J]. 中华肾脏病杂志, 2010, 26(7): 525-529.
[6]
Goffin E,Combet S,Jamar F, et al. Expression of aquaporin-1 in a long-term peritoneal dialysis patient with impaired transcellular water transport[J]. Am J Kidney Dis, 1999, 33(2): 383-388.
[7]
Aroeira LS,Aguilera A,Sánchez-Tomero JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions[J]. J Am Soc Nephrol, 2007, 18(7): 2004-2013.
[8]
Kinashi H,Ito Y,Mizuno M, et al. TGF-β1 promotes lymphangiogenesis during peritoneal fibrosis[J]. J Am Soc Nephrol, 2013, 24(10): 1627-1642.
[9]
De Alvaro F,Castro MJ,Dapena F, et al. Peritoneal resting is beneficial in peritoneal hyperpermeability and ultrafiltration failure[J]. Adv Perit Dial, 1993, 9: 56.
[10]
Kolesnyk I,Noordzij M,Dekker FW, et al. A positive effect of AⅡ inhibitors on peritoneal membrane function in long-term PD patients[J]. Nephrol Dial Transplant, 2009, 24(1): 272-277.
[11]
La Milia V,Di Filippo S,Crepaldi M, et al. Mini-peritoneal equilibration test: a simple and fast method to assess free water and small solute transport across the peritoneal membrane[J]. Kidney Int, 2005, 68(2): 840-846.
[12]
Stoenoiu MS,Ni J,Verkaeren C, et al. Corticosteroids induce expression of aquaporin-1 and increase transcellular water transport in rat peritoneum[J]. J Am Soc Nephrol, 2003, 14(3): 555-565.
[13]
De Arteaga J,Ledesma F,Garay G, et al. High-dose steroid treatment increases free water transport in peritoneal dialysis patients[J]. Nephrol Dial Transplant, 2011, 26(12): 4142-4145.
[14]
Yool AJ,Morelle J,Cnops Y, et al. AqF026 is a pharmacologic agonist of the water channel aquaporin-1[J]. J Am Soc Nephrol, 2013, 24(7): 1045-1052.
[15]
Kawanishi H,Kawaguchi Y,Fukui H, et al. Encapsulating peritoneal sclerosis in Japan: a prospective, controlled, multicenter study[J]. Am J Kidney Dis, 2004, 44(4): 729-737.
[16]
Vizzardi V,Sandrini M,Zecchini S, et al. Encapsulating peritoneal sclerosis in an Italian center: thirty year experience[J]. J Nephrol, 2016, 29(2): 259-267.
[17]
Hirahara I,Inoue M,Okuda K, et al. The potential of matrix metalloproteinase-2 as a marker of peritoneal injury, increased solute transport, or progression to encapsulating peritoneal sclerosis during peritoneal dialysis-a multicentre study in Japan[J]. Nephrol Dial Transpl, 2007, 22(2): 560-567.
[18]
Balasubramaniam G,Brown EA,Davenport A, et al. The Pan-Thames EPS study: treatment and outcomes of encapsulating peritoneal sclerosis[J]. Nephrol Dial Transpl, 2009, 24(8): 3209-3215.
[19]
Korte MR,Fieren MW,Sampimon DE, et al. Tamoxifen is associated with lower mortality of encapsulating peritoneal sclerosis: results of the Dutch Multicentre EPS Study[J]. Nephrol Dial Transpl, 2011, 26(2): 691-697.
[20]
Hirahara I,Kusano E,Morishita Y, et al. Matrix metalloproteinase-2 as a superior biomarker for peritoneal deterioration in peritoneal dialysis[J]. World J Nephrol, 2016, 5(2): 204-212.
[21]
Dohi K. Surgical techniques for prevention of recurrence after total enterolysis in encapsulating peritoneal sclerosis[J]. Adv Perit Dial, 2008, 24: 51-55.
[22]
Baranowska-Daca E,Torneli J,Popovich RP, et al. Use of bethanechol chloride to increase available ultrafiltration in CAPD[J]. Adv Perit Dial, 1995, 11: 69-72.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[3] 易柏成, 李旭光, 王容容, 王新璇. 数字化3D打印导板应用于上前牙钙化根管治疗2例[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 385-390.
[4] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[5] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[6] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[7] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[8] 石海波, 赵旭东, 王聪, 曲巍. 气肿性肾盂肾炎、气肿性膀胱炎并脓毒性休克一例报道并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 644-647.
[9] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[10] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[11] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[12] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[13] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[14] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[15] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
阅读次数
全文


摘要