切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2017, Vol. 06 ›› Issue (06) : 252 -258. doi: 10.3877/cma.j.issn.2095-3216.2017.06.003

所属专题: 文献

专家论坛

急性肾脏病的病因及发病机制
肖力1,(), 孙林1, 刘伏友1   
  1. 1. 410011 中南大学肾脏病研究所、中南大学湘雅二医院肾内科
  • 收稿日期:2017-11-13 出版日期:2017-12-28
  • 通信作者: 肖力

Etiology and pathogenesis of acute kidney disease

Li Xiao1,(), Lin Sun1, Fuyou Liu1   

  1. 1. Department of Nephrology, Second Xiangya Hospital, Kidney Institute of Central South University, Changsha 410011, Hunan Province, China
  • Received:2017-11-13 Published:2017-12-28
  • Corresponding author: Li Xiao
  • About author:
    Corresponding author: Xiao Li, Email:
引用本文:

肖力, 孙林, 刘伏友. 急性肾脏病的病因及发病机制[J/OL]. 中华肾病研究电子杂志, 2017, 06(06): 252-258.

Li Xiao, Lin Sun, Fuyou Liu. Etiology and pathogenesis of acute kidney disease[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2017, 06(06): 252-258.

急性肾脏病(AKD)是新近提出的介于急性肾损伤(AKI)和慢性肾脏病(CKD)之间的一组临床综合征,即AKI 1期或以上持续大于7 d而小于90 d的肾脏损伤。AKD发病与患者年龄、种族、遗传背景、CKD与合并症、急性疾病及AKI的严重程度和持续时间等因素密切相关。AKD发病机制较为复杂,目前认为,CKD与合并症、急性疾病及引起AKD的各种病因可引起肾脏缺血、缺氧共同病理改变,导致肾脏内皮细胞受损、微循环障碍、肾小管细胞G2/M周期停滞和细胞"沉寂"、巨噬细胞等免疫细胞局部募集与活化;多种基因表达异常,特别是生物标记物异常改变,加之衰老、表观遗传等因素,导致炎症因子和细胞因子等异常表达;肾脏局部持续炎症状态,甚至纤维化信号通路激活,肾小管上皮细胞再生能力下降,出现肾脏损伤后"不良修复"和修复延迟;以上机制共同导致AKD发生与进展。因此,了解AKD病因与发病机制对探讨AKI损伤与修复新机制,以及阻断其发展到CKD具有重要理论与防治意义。

Acute kidney disease (AKD), a group of clinical syndromes between acute kidney injury (AKI) and chronic kidney disease (CKD), is defined as the kidney injury from after 7 days of AKI to the onset of CKD for 90 days. The pathogenesis of AKD is closely related to multiple factors including age, race, gene, CKD and comorbidities, acute disease, and the severity and duration of AKI. The mechanism of AKD is relatively complex. At present it is considered that CKD and comorbidities, acute diseases, AKD, and other causes can cause renal ischemia, and common pathological changes of hypoxia, leading to renal endothelial cell damage, microcirculation disturbance, tubular cell G2/M cycle stagnation and cell "silence" , local recruitment and activation of macrophages and other immune cells, abnormal expression of a variety of genes, and especially abnormal changes of biomarkers. These factors, combining with aging and epigenetics, etc, can contribute to abnormal expression of inflammatory cytokines and cytokines, renal local persistent inflammation, and even activation of fibrosis signal pathway, tubular epithelial cell regeneration impairment, resulting in "poor repair" and repair delay after renal injury. The above mechanisms lead to the occurrence and progression of AKD. Therefore, it is of important theoretical and prevention and treatment significance to understand the etiology and pathogenesis of AKD for exploring new mechanisms of injury and repair of AKI so as to block its progression to CKD.

21
Schrimpf C, Duffield JS. Mechanisms of fibrosis: the role of the pericyte [J]. Curr Opin Nephrol Hypertens, 2011, 20(3): 297-305.
22
Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis [J]. Am J Pathol, 2010, 176(1): 85-97.
23
Schrimpf C, Xin C, Campanholle G, et al. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury [J]. J Am Soc Nephrol, 2012, 23(5): 868-883.
24
Lin SL, Chang FC, Schrimpf C, et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis [J]. Am J Pathol, 2011, 178(2): 911-923.
25
Linkermann A, Bräsen JH, Darding M, et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury [J]. Proc Natl Acad Sci USA, 2013, 110(29): 12024-12029.
26
Linkermann A, De Zen F, Weinberg J, et al. Programmed necrosis in acute kidney injury [J]. Nephrol Dial Transplant, 2012, 27(9): 3412-3419.
27
Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, et al. Histone deacetylase inhibitor enhances recovery after AKI [J]. J Am Soc Nephrol, 2013, 24(6): 943-953.
28
Zhou L, Fu P, Huang XR, et al. Activation of p53 promotes renal injury in acute aristolochic acid nephropathy [J]. J Am Soc Nephrol, 2010, 21(1): 31-41.
29
Linfert D, Chowdhry T, Rabb H. Lymphocytes and ischemia-reperfusion injury [J]. Transplant Rev (Orlando), 2009, 23(1): 1-10.
30
Kinsey GR, Sharma R, Huang L, et al. Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury [J]. J Am Soc Nephrol, 2009, 20(8): 1744-1753.
31
Burne-Taney MJ, Ascon DB, Daniels F, et al. B cell deficiency confers protection from renal ischemia reperfusion injury [J]. J Immunol, 2003, 171(6): 3210-3215.
32
Park P, Haas M, Cunningham PN, et al. Injury in renal ischemia-reperfusion is independent from immunoglobulins and T lymphocytes [J]. Am J Physiol Renal Physiol, 2002, 282(2): F352-F357.
33
Ysebaert DK, De Greef KE, Vercauteren SR, et al. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury [J]. Nephrol Dial Transplant, 2000, 15(10): 1562-1574.
34
Savill J, Smith J, Sarraf C, et al. Glomerular mesangial cells and inflammatory macrophages ingest neutrophils undergoing apoptosis [J]. Kidney Int, 1992, 42(4): 924-936.
35
Day YJ, Huang L, Ye H, et al. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages [J]. Am J Physiol Renal Physiol, 2005, 288(4): F722-F731.
36
Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair [J]. J Clin Invest, 2008, 118(11): 3522-3530.
37
Lin SL, Li B, Rao S, et al. Macrophage Wnt7b is critical for kidney repair and regeneration [J]. Proc Natl Acad Sci USA, 2010, 107(9): 4194-4199.
38
Kim MG, Kim SC, Ko YS, et al. The role of M2 macrophages in the progression of chronic kidney disease following acute kidney injury [J]. PLoS One, 2015, 10(12): e0143961.
39
Jang HS, Kim J, Park YK, et al. Infiltrated macrophages contribute to recovery after ischemic injury but not to ischemic preconditioning in kidneys [J]. Transplantation, 2008, 85(3): 447-455.
40
Lech M, Rommele C, Grobmayr R, et al. Endogenous and exogenous pentraxin-3 limits postischemic acute and chronic kidney injury [J]. Kidney Int, 2013, 83(4): 647-661.
41
Lee S, Huen S, Nishio H, et al. Distinct macrophage phenotypes contribute to kidney injury and repair [J]. J Am Soc Nephrol, 2011, 22(2): 317-326.
42
Lech M, Grobmayr R, Ryu M, et al. Macrophage phenotype controls long-term AKI outcomes-kidney regeneration versus atrophy [J]. J Am Soc Nephrol, 2014, 25(2): 292-304.
43
Kumar S, Liu J, McMahon AP. Defining the acute kidney injury and repair transcriptome [J]. Semin Nephrol, 2014, 34(4): 404-417.
44
Basile DP, Fredrich K, Alausa M, et al. Identification of persistently altered gene expression in the kidney after functional recovery from ischemic acute renal failure [J]. Am J Physiol Renal Physiol, 2005, 288(5): F953-F963.
45
Basile DP, Martin DR, Hammerman MR. Extracellular matrix-related genes in kidney after ischemic injury: potential role for TGF-beta in repair [J]. Am J Physiol, 1998, 275(6 Pt 2): F894-F903.
46
Stroo I, Stokman G, Teske GJ, et al. Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase [J]. Int Immunol, 2010, 22(6): 433-442.
47
Havasi A, Haegele JA, Gall JM, et al. Histone acetyl transferase (HAT) HBO1 and JADE1 in epithelial cell regeneration [J]. Am J Pathol, 2013, 182(1): 152-162.
48
Nangaku M, Hirakawa Y, Mimura I, et al. Epigenetic changes in the acute kidney injury-to-chronic kidney disease transition [J]. Nephron, 2017, [Epub ahead of print].
49
Bomsztyk K, Flanagin S, Mar D, et al. Synchronous recruitment of epigenetic modifiers to endotoxin synergistically activated Tnf-α gene in acute kidney injury [J]. PLoS One, 2013, 8(7): e70322.
50
Lorenzen JM, Kaucsar T, Schauerte C, et al. MicroRNA-24 antagonism prevents renal ischemia reperfusion injury [J]. J Am Soc Nephrol, 2014, 25(12): 2717-2729.
1
James M, Bouchard J, Ho J, et al. Canadian Society of Nephrology commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury [J]. Am J Kidney Dis, 2013, 61(5): 673-685.
2
Chawla LS, Bellomo R, Bihorac A, et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup [J]. Nat Rev Nephrol, 2017, 13(4): 241-257.
3
Forni LG, Darmon M, Ostermann M, et al. Renal recovery after acute kidney injury [J]. Intensive Care Med, 2017, 43(6): 855-866.
51
Wei Q, Bhatt K, He HZ, et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury [J]. J Am Soc Nephrol, 2010, 21(5): 756-761.
52
Cantaluppi V, Gatti S, Medica D, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells [J]. Kidney Int, 2012, 82(4): 412-427.
53
Ko GJ, Grigoryev DN, Linfert D, et al. Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD transition [J]. Am J Physiol Renal Physiol, 2010, 298(6): F1472-F1483.
4
Heung M, Steffick DE, Zivin K, et al. Acute kidney injury recovery pattern and subsequent risk of CKD: an analysis of veterans health administration data [J]. Am J Kidney Dis, 2016, 67(5): 742-752.
5
Nie S, Feng Z, Xia L, et al. Risk factors of prognosis after acute kidney injury in hospitalized patients [J]. Front Med, 2017, 11(3): 393-402.
6
Wald R, Shariff SZ, Adhikari NK, et al. The association between renal replacement therapy modality and long-term outcomes among critically ill adults with acute kidney injury: a retrospective cohort study [J]. Crit Care Med, 2014, 42(4): 868-877.
54
Yang YH, He XJ, Chen SR, et al. Changes of serum and urine neutrophil gelatinase-associated lipocalin in type-2 diabetic patients with nephropathy: one year observational follow-up study [J]. Endocrine, 2009, 36(1): 45-51.
55
Lin YF, Ko WJ, Chu TS, et al. The 90-day mortality and the subsequent renal recovery in critically ill surgical patients requiring acute renal replacement therapy [J]. Am J Surg, 2009, 198(3): 325-332.
56
Rajagopalan R, Neumann WL, Poreddy AR, et al. Hydrophilic pyrazine dyes as exogenous fluorescent tracer agents for real-time point-of-care measurement of glomerular filtration rate [J]. J Med Chem, 2011, 54(14): 5048-5058.
7
Bouchard J, Acharya A, Cerda J, et al. A prospective international multicenter study of AKI in the intensive care unit [J]. Clin J Am Soc Nephrol, 2015, 10(8): 1324-1331.
8
Bell M, Granath F, Schön S, et al. Continuous renal replacement therapy is associated with less chronic renal failure than intermittent haemodialysis after acute renal failure [J]. Intensive Care Med, 2007, 33(5): 773-780.
9
Truche AS, Darmon M, Bailly S, et al. Continuous renal replacement therapy versus intermittent hemodialysis in intensive care patients: impact on mortality and renal recovery [J]. Intensive Care Med, 2016, 42(9): 1408-1417.
57
Neyra JA, Manllo J, Li X, et al. Association of de novo dipstick albuminuria with severe acute kidney injury in critically ill septic patients [J]. Nephron Clin Pract, 2014, 128(3-4): 373-380.
58
Srisawat N, Murugan R, Kellum JA. Repair or progression after AKI: a role for biomarkers? [J]. Nephron Clin Pract, 2014, 127(1-4): 185-189.
59
Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging [J]. Cell, 2013, 153(6): 1194-1217.
10
Palant CE, Amdur RL, Chawla LS. The acute kidney injury to chronic kidney disease transition: a potential opportunity to improve care in acute kidney injury [J]. Contrib Nephrol, 2016, 187: 55-72.
11
Ferenbach DA, Bonventre JV. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD [J]. Nat Rev Nephrol, 2015, 11(5): 264-276.
12
Evans RG, Ince C, Joles JA, et al. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology [J]. Clin Exp Pharmacol Physiol, 2013, 40(2): 106-122.
60
Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence [J]. Ann N Y Acad Sci, 2000, 908: 244-254.
61
Reutzel-Selke A, Jurisch A, Denecke C, et al. Donor age intensifies the early immune response after transplantation [J]. Kidney Int, 2007, 71(7): 629-636.
62
Kelly J, Ali Khan A, Yin J, et al. Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice [J]. J Clin Invest, 2007, 117(11): 3421-3426.
13
Noiri E, Nakao A, Uchida K, et al. Oxidative and nitrosative stress in acute renal ischemia [J]. Am J Physiol Renal Physiol, 2001, 281(5): F948-F957.
14
De Greef KE, Ysebaert DK, Persy V, et al. ICAM-1 expression and leukocyte accumulation in inner stripe of outer medulla in early phase of ischemic compared to HgCl2-induced ARF [J]. Kidney Int, 2003, 63(5): 1697-1707.
15
Kelly KJ, Sutton TA, Weathered N, et al. Minocycline inhibits apoptosis and inflammation in a rat model of ischemic renal injury [J]. Am J Physiol Renal Physiol, 2004, 287(4): F760-F766.
16
Basile DP. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function [J]. Kidney Int, 2007, 72(2): 151-156.
17
Kim M, Ham A, Kim JY, et al. The volatile anesthetic isoflurane induces ecto-5′-nucleotidase (CD73) to protect against renal ischemia and reperfusion injury [J]. Kidney Int, 2013, 84(1): 90-103.
18
Venkatachalam MA, Weinberg JM. The conundrum of protection from AKI by adenosine in rodent clamp ischemia models [J]. Kidney Int, 2013, 84(1): 16-19.
63
Kwekel JC, Desai VG, Moland CL, et al. Life cycle analysis of kidney gene expression in male F344 rats [J]. PLoS One, 2013, 8(10): e75305.
64
Kuilman T, Michaloglou C, Mooi WJ, et al. The essence of senescence [J]. Genes Dev, 2010, 24(22): 2463-2479.
65
Schmitt R, Marlier A, Cantley LG. Zag expression during aging suppresses proliferation after kidney injury [J]. J Am Soc Nephrol, 2008, 19(12): 2375-2383.
19
Geng H, Lan R, Wang G, et al. Inhibition of autoregulated TGFbeta signaling simultaneously enhances proliferation and differentiation of kidney epithelium and promotes repair following renal ischemia [J]. Am J Pathol, 2009, 174(4): 1291-1308.
20
Spurgeon KR, Donohoe DL, Basile DP. Transforming growth factor-beta in acute renal failure: receptor expression, effects on proliferation, cellularity, and vascularization after recovery from injury [J]. Am J Physiol Renal Physiol, 2005, 288(3): F568-F577.
66
Karam Z, Tuazon J. Anatomic and physiologic changes of the aging kidney [J]. Clin Geriatr Med, 2013, 29(3): 555-564.
67
Thum T, Hoeber S, Froese S, et al. Age-dependent impairment of endothelial progenitor cells is corrected by growth-hormone-mediated increase of insulin-like growth-factor-1 [J]. Circ Res, 2007, 100(3): 434-443.
68
Behrens A, van Deursen JM, Rudolph KL, et al. Impact of genomic damage and ageing on stem cell function [J]. Nat Cell Biol, 2014, 16(3): 201-207.
69
Stolzing A, Scutt A. Age-related impairment of mesenchymal progenitor cell function [J]. Aging Cell, 2006, 5(3): 213-224.
[1] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[2] 李友, 唐林峰, 杜伟伟, 刘海亮, 余新水, 沈佳宇, 巨积辉. 皮瓣联合掌长肌腱折叠单排三点式固定治疗指背侧创面伴锤状指畸形的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 485-490.
[3] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[4] 林同辉, 杨卫玺. 股前外侧穿支皮瓣在电烧伤治疗中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 526-530.
[5] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[6] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[7] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[8] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[9] 王学虎, 赵渝. 复杂腹壁疝手术中血管损伤并发症的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 616-619.
[10] 周正阳, 陈凯, 仇多良, 邵乐宁, 吴浩荣, 钟丰云. 腹腔镜腹股沟疝修补术后出血原因分析及处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 660-664.
[11] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[12] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[13] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[14] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要