切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2018, Vol. 07 ›› Issue (06) : 280 -284. doi: 10.3877/cma.j.issn.2095-3216.2018.06.009

所属专题: 文献

综述

免疫抑制剂的药物基因组学研究进展
范皎1, 胡梦2, 陈香岭2, 万军3, 张明华2,()   
  1. 1. 100853 北京,解放军总医院老年医学研究所
    2. 解放军总医院临床药学实验室
    3. 解放军总医院南楼消化科
  • 收稿日期:2018-04-19 出版日期:2018-12-28
  • 通信作者: 张明华
  • 基金资助:
    国家卫计委保健重点科研项目(W2016ZD02)

Research progress in pharmacogenomics of immunosuppressants

Jiao Fan1, Meng Hu2, Xiangling Chen2, Jun Wan3, Minghua Zhang2,()   

  1. 1. Institute of Geriatrics; PLA General Hospital, Beijing 100853, China
    2. Clinical Pharmacy Laboratory; PLA General Hospital, Beijing 100853, China
    3. Department of South Building Gastroenterology; PLA General Hospital, Beijing 100853, China
  • Received:2018-04-19 Published:2018-12-28
  • Corresponding author: Minghua Zhang
  • About author:
    Corresponding author: Zhang Minghua, Email:
引用本文:

范皎, 胡梦, 陈香岭, 万军, 张明华. 免疫抑制剂的药物基因组学研究进展[J]. 中华肾病研究电子杂志, 2018, 07(06): 280-284.

Jiao Fan, Meng Hu, Xiangling Chen, Jun Wan, Minghua Zhang. Research progress in pharmacogenomics of immunosuppressants[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2018, 07(06): 280-284.

患者对药物反应的个体差异,一般是由药物在体内的代谢酶、转运体和靶点编码基因的多态性引起的。因为免疫抑制剂的治疗窗口较窄,患者个体差异导致的不良反应和疗效不佳,都可能引起比较严重的后果,近年人们对于利用药物基因组学进行个体化治疗给予了很高的期待。大量研究已经揭示了多种基因多态性与免疫抑制剂的药代动力学和药效动力学(PK/PD)之间的关联。本文将围绕免疫抑制剂的PK/PD,选择部分具备临床参考意义的研究,简要综述与免疫抑制剂代谢、转运和活化过程相关的药物基因组学进展。

The individual differences in the patients′ response to the drug are generally caused by polymorphisms in the metabolic enzymes, transporters, and target-encoding genes of the drug in the body. The therapeutic window of immunosuppressive agents is narrow, and the adverse reactions and poor efficacy caused by individual differences in patients may cause serious consequences. In recent years, people have high expectations for individualized treatment using pharmacogenomics. Numerous studies have revealed a link between multiple gene polymorphisms and pharmacokinetics and pharmacodynamics (PK/PD) of immunosuppressive agents. This review focused on the PK/PD of immunosuppressants in some selected studies with clinical significance to briefly review the progress of pharmacogenomics related to the process of metabolism, transport, and activation of immunosuppressants.

图1 硫唑嘌呤在体内的代谢途径[28]
[1]
van Schaik RH, van der Heiden IP, van den Anker JN, et al. CYP3A5 variant allele frequencies in Dutch Caucasians [J]. Clin Chem, 2002, 48(10): 1668-1671.
[2]
Rojas L, Neumann I, Herrero MJ, et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies [J]. Pharmacogenomics J, 2015, 15(1): 38-48.
[3]
Durand P, Debray D, Kolaci M, et al. Tacrolimus dose requirement in pediatric liver transplantation: influence of CYP3A5 gene polymorphism [J]. Pharmacogenomics, 2013, 14(9): 1017-1025.
[4]
Gomez-Bravo MA, Salcedo M, Fondevila C, et al. Impact of donor and recipient CYP3A5 and ABCB1 genetic polymorphisms on tacrolimus dosage requirements and rejection in Caucasian Spanish liver transplant patients [J]. J Clin Pharmacol, 2013, 53(11): 1146-1154.
[5]
Thervet E, Loriot MA, Barbier S, et al. Optimization of initial tacrolimus dose using pharmacogenetic testing [J]. Clin Pharmacol Ther, 2010, 87(6): 721-726.
[6]
Haufroid V, Mourad M, van Kerckhove V, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients [J]. Pharmacogenetics, 2004, 14(3): 147-154.
[7]
Min SI, Kim SY, Ahn SH, et al. CYP3A5 *1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients [J]. Transplantation, 2010, 90(12): 1394-1400.
[8]
Ro H, Min SI, Yang J, et al. Impact of tacrolimus intraindividual variability and CYP3A5 genetic polymorphism on acute rejection in kidney transplantation [J]. Ther Drug Monit, 2012, 34(6): 680-685.
[9]
Satoh S, Saito M, Inoue T, et al. CYP3A5 *1 allele associated with tacrolimus trough concentrations but not subclinical acute rejection or chronic allograft nephropathy in Japanese renal transplant recipients [J]. Eur J Clin Pharmacol, 2009, 65(5): 473-481.
[10]
Hattori Y, Tanaka H, Teranishi J, et al. Influence of cytochrome P450 3A5 polymorphisms on viral infection incidence in kidney transplant patients treated with tacrolimus [J]. Transplant Proc, 2014, 46(2): 570-573.
[11]
Xue F, Han L, Chen Y, et al. CYP3A5 genotypes affect tacrolimus pharmacokinetics and infectious complications in Chinese pediatric liver transplant patients [J]. Pediatr Transplant, 2014, 18(2): 166-176.
[12]
Shi WL, Tang HL, Zhai SD. Effects of the CYP3A4*1B genetic polymorphism on the pharmacokinetics of tacrolimus in adult renal transplant recipients: a meta-analysis [J]. PLoS One, 2015, 10(6): e0127995.
[13]
Kuypers DR, de Jonge H, Naesens M, et al. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients [J]. Clin Pharmacol Ther, 2007, 82(6): 711-725.
[14]
Tavira B, Coto E, Diaz-Corte C, et al. A search for new CYP3A4 variants as determinants of tacrolimus dose requirements in renal-transplanted patients [J]. Pharmacogenet Genomics, 2013, 23(8): 445-448.
[15]
Hesselink DA, van Schaik RH, van der Heiden IP, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus [J]. Clin Pharmacol Ther, 2003, 74(3): 245-254.
[16]
Miura M, Satoh S, Kagaya H, et al. Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients [J]. Pharmacogenomics, 2011, 12(7): 977-984.
[17]
Uesugi M, Hosokawa M, Shinke H, et al. Influence of cytochrome P450 (CYP) 3A4*1G polymorphism on the pharmacokinetics of tacrolimus, probability of acute cellular rejection, and mRNA expression level of CYP3A5 rather than CYP3A4 in living-donor liver transplant patients [J]. Biol Pharm Bull, 2013, 36(11): 1814-1821.
[18]
Zuo XC, Ng CM, Barrett JS, et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis [J]. Pharmacogenet Genomics, 2013, 23(5): 251-261.
[19]
Li CJ, Li L, Lin L, et al. Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients [J]. PLoS One, 2014, 9(1): e86206.
[20]
Zhang JJ, Liu SB, Xue L, et al. The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients [J]. Int J Clin Pharmacol Ther, 2015, 53(9): 728-736.
[21]
Stocco G, Cheok MH, Crews KR, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia [J]. Clin Pharmacol Ther, 2009, 85(2): 164-172.
[22]
Sahasranaman S, Howard D, Roy S. Clinical pharmacology and pharmacogenetics of thiopurines [J]. Eur J Clin Pharmacol, 2008, 64(8): 753-767.
[23]
FDA. New drug application [DB/OL]. 2014:

URL    
[24]
Colletti RB, Baldassano RN, Milov DE, et al. Variation in care in pediatric Crohn disease [J]. J Pediatr Gastroenterol Nutr, 2009, 49(3): 297-303.
[25]
Ford LT, Berg JD. Thiopurine S-methyltransferase (TPMT) assessment prior to starting thiopurine drug treatment; a pharmacogenomic test whose time has come [J]. J Clin Pathol, 2010, 63(4): 288-295.
[26]
Meggitt SJ, Gray JC, Reynolds NJ. Azathioprine dosed by thiopurine methyltransferase activity for moderate-to-severe atopic eczema: a double-blind, randomised controlled trial [J]. Lancet, 2006, 367(9513): 839-846.
[27]
Sandborn WJ. Rational dosing of azathioprine and 6-mercaptopurine [J]. Gut, 2001, 48(5): 591-592.
[28]
Relling MV, Gardner EE, Sandborn WJ, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing [J]. Clin Pharmacol Ther, 2011, 89(3): 387-391.
[29]
Liang DC, Yang CP, Liu HC, et al. NUDT15 gene polymorphism related to mercaptopurine intolerance in Taiwan Chinese children with acute lymphoblastic leukemia [J]. Pharmacogenomics J, 2016, 16(6): 536-539.
[30]
Chiengthong K, Ittiwut C, Muensri S, et al. NUDT15 c. 415C>T increases risk of 6-mercaptopurine induced myelosuppression during maintenance therapy in children with acute lymphoblastic leukemia [J]. Haematologica, 2016, 101(1): e24-e26.
[31]
Yang SK, Hong M, Baek J, et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia [J]. Nat Genet, 2014, 46(9): 1017-1020.
[32]
Zheng S, Tasnif Y, Hebert MF, et al. CYP3A5 gene variation influences cyclosporine A metabolite formation and renal cyclosporine disposition [J]. Transplantation, 2013, 95(6): 821-827.
[33]
Zhu HJ, Yuan SH, Fang Y, et al. The effect of CYP3A5 polymorphism on dose-adjusted cyclosporine concentration in renal transplant recipients: a meta-analysis [J]. Pharmacogenomics J, 2011, 11(3): 237-246.
[34]
Sun B, Guo Y, Gao J, et al. Influence of CYP3A and ABCB1 polymorphisms on cyclosporine concentrations in renal transplant recipients [J]. Pharmacogenomics, 2017, 18(16): 1503-1513.
[35]
Zhang YT, Yang LP, Shao H, et al. ABCB1 polymorphisms may have a minor effect on ciclosporin blood concentrations in myasthenia gravis patients [J]. Br J Clin Pharmacol, 2008, 66(2): 240-246.
[36]
Sharaki O, Zeid M, Moez P, et al. Impact of CYP3A4 and MDR1 gene (G2677T) polymorphisms on dose requirement of the cyclosporine in renal transplant Egyptian recipients [J]. Mol Biol Rep, 2015, 42(1): 105-117.
[37]
Crettol S, Venetz JP, Fontana M, et al. Influence of ABCB1 genetic polymorphisms on cyclosporine intracellular concentration in transplant recipients [J]. Pharmacogenet Genomics, 2008, 18(4): 307-315.
[38]
Lee J, Wang R, Yang Y, et al. The effect of ABCB1 C3435T polymorphism on cyclosporine dose requirements in kidney transplant recipients: a meta-analysis [J]. Basic Clin Pharmacol Toxicol, 2015, 117(2): 117-125.
[39]
Santoro A, Felipe CR, Tedesco-Silva H, et al. Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients [J]. Pharmacogenomics, 2011, 12(9): 1293-1303.
[40]
Sanchez-Lazaro I, Herrero MJ, Jordan-De Luna C, et al. Association of SNPs with the efficacy and safety of immunosuppressant therapy after heart transplantation [J]. Pharmacogenomics, 2015, 16(9): 971-979.
[41]
Garcia M, Macias RM, Cubero JJ, et al. ABCB1 polymorphisms are associated with cyclosporine-induced nephrotoxicity and gingival hyperplasia in renal transplant recipients [J]. Eur J Clin Pharmacol, 2013, 69(3): 385-393.
[42]
Li Y, Yan L, Shi Y, et al. CYP3A5 and ABCB1 genotype influence tacrolimus and sirolimus pharmacokinetics in renal transplant recipients [J]. Springerplus, 2015, 4: 637.
[43]
Pascual T, Apellaniz-Ruiz M, Pernaut C, et al. Polymorphisms associated with everolimus pharmacokinetics, toxicity and survival in metastatic breast cancer [J]. PLoS One, 2017, 12(7): e0180192.
[44]
Lesche D, Sigurdardottir V, Setoud R, et al. Influence of CYP3A5 genetic variation on everolimus maintenance dosing after cardiac transplantation [J]. Clin Transplant, 2015, 29(12): 1213-1220.
[45]
Shah S, Harwood SM, Dohler B, et al. Inosine monophosphate dehydrogenase polymorphisms and renal allograft outcome [J]. Transplantation, 2012, 94(5): 486-491.
[46]
Bouamar R, Hesselink DA, van Schaik RH, et al. Mycophenolic acid-related diarrhea is not associated with polymorphisms in SLCO1B nor with ABCB1 in renal transplant recipients [J]. Pharmacogenet Genomics, 2012, 22(6): 399-407.
[1] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[2] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[3] 胡欧婵, 黄仲英. 不明原因复发性流产患者的治疗研究现状与展望[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 16-22.
[4] 张晓芳, 王平. 阴道黑色素瘤诊疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 621-626.
[5] 陈静红, 尹如铁. 免疫治疗和靶向治疗在阴道黑色素瘤的探索性研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(01): 1-6.
[6] 邓昊, 苏葵, 贾丽华, 吕倩书, 欧阳樱紫. Er:YAG激光联合他克莫司软膏治疗口腔扁平苔藓的临床研究[J]. 中华口腔医学研究杂志(电子版), 2022, 16(04): 219-223.
[7] 陈晰娟, 夏娟. 口腔扁平苔藓的治疗进展[J]. 中华口腔医学研究杂志(电子版), 2022, 16(04): 203-207.
[8] 中国康复医学会器官移植康复专业委员会. 成人实体器官移植后糖尿病管理专家共识[J]. 中华移植杂志(电子版), 2023, 17(04): 205-220.
[9] 巨春蓉, 何建行, 钟南山. 咪唑立宾在器官移植领域的应用及展望[J]. 中华移植杂志(电子版), 2023, 17(04): 227-231.
[10] 李君, 范铁艳, 牛鑫鑫, 陈虹. 肝移植后他克莫司致缺铁性贫血一例[J]. 中华移植杂志(电子版), 2023, 17(03): 169-170.
[11] 刘路浩, 苏泳鑫, 曾丽娟, 张鹏, 陈荣鑫, 徐璐, 李光辉, 方佳丽, 马俊杰, 陈正. 新型冠状病毒感染疫情期间肾移植受者免疫抑制剂服药依从性研究[J]. 中华移植杂志(电子版), 2023, 17(03): 140-145.
[12] 徐烨, 李婧, 刘冉佳, 潘晨, 郭明星, 崔向丽. 2017至2021年中国95家医疗机构肝移植术后免疫抑制剂用药分析[J]. 中华移植杂志(电子版), 2023, 17(03): 134-139.
[13] 田敏, 王博, 刘学民, 张晓刚, 郭坤, 李宇, 胡良硕, 霍锦霞, 吕毅. 他克莫司个体内高变异度与肝移植术后免疫介导移植物损伤的临床研究[J]. 中华移植杂志(电子版), 2022, 16(02): 65-71.
[14] 徐振远, 薛强, 赵渊宇, 郭猛, 傅志仁, 殷浩. 器官移植后糖尿病临床治疗[J]. 中华肝脏外科手术学电子杂志, 2022, 11(03): 231-234.
[15] 程庆砾. 免疫抑制剂在肾小球疾病中的合理使用[J]. 中华肾病研究电子杂志, 2023, 12(02): 120-120.
阅读次数
全文


摘要