[1] |
van Schaik RH, van der Heiden IP, van den Anker JN, et al. CYP3A5 variant allele frequencies in Dutch Caucasians [J]. Clin Chem, 2002, 48(10): 1668-1671.
|
[2] |
Rojas L, Neumann I, Herrero MJ, et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies [J]. Pharmacogenomics J, 2015, 15(1): 38-48.
|
[3] |
Durand P, Debray D, Kolaci M, et al. Tacrolimus dose requirement in pediatric liver transplantation: influence of CYP3A5 gene polymorphism [J]. Pharmacogenomics, 2013, 14(9): 1017-1025.
|
[4] |
Gomez-Bravo MA, Salcedo M, Fondevila C, et al. Impact of donor and recipient CYP3A5 and ABCB1 genetic polymorphisms on tacrolimus dosage requirements and rejection in Caucasian Spanish liver transplant patients [J]. J Clin Pharmacol, 2013, 53(11): 1146-1154.
|
[5] |
Thervet E, Loriot MA, Barbier S, et al. Optimization of initial tacrolimus dose using pharmacogenetic testing [J]. Clin Pharmacol Ther, 2010, 87(6): 721-726.
|
[6] |
Haufroid V, Mourad M, van Kerckhove V, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients [J]. Pharmacogenetics, 2004, 14(3): 147-154.
|
[7] |
Min SI, Kim SY, Ahn SH, et al. CYP3A5 *1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients [J]. Transplantation, 2010, 90(12): 1394-1400.
|
[8] |
Ro H, Min SI, Yang J, et al. Impact of tacrolimus intraindividual variability and CYP3A5 genetic polymorphism on acute rejection in kidney transplantation [J]. Ther Drug Monit, 2012, 34(6): 680-685.
|
[9] |
Satoh S, Saito M, Inoue T, et al. CYP3A5 *1 allele associated with tacrolimus trough concentrations but not subclinical acute rejection or chronic allograft nephropathy in Japanese renal transplant recipients [J]. Eur J Clin Pharmacol, 2009, 65(5): 473-481.
|
[10] |
Hattori Y, Tanaka H, Teranishi J, et al. Influence of cytochrome P450 3A5 polymorphisms on viral infection incidence in kidney transplant patients treated with tacrolimus [J]. Transplant Proc, 2014, 46(2): 570-573.
|
[11] |
Xue F, Han L, Chen Y, et al. CYP3A5 genotypes affect tacrolimus pharmacokinetics and infectious complications in Chinese pediatric liver transplant patients [J]. Pediatr Transplant, 2014, 18(2): 166-176.
|
[12] |
Shi WL, Tang HL, Zhai SD. Effects of the CYP3A4*1B genetic polymorphism on the pharmacokinetics of tacrolimus in adult renal transplant recipients: a meta-analysis [J]. PLoS One, 2015, 10(6): e0127995.
|
[13] |
Kuypers DR, de Jonge H, Naesens M, et al. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients [J]. Clin Pharmacol Ther, 2007, 82(6): 711-725.
|
[14] |
Tavira B, Coto E, Diaz-Corte C, et al. A search for new CYP3A4 variants as determinants of tacrolimus dose requirements in renal-transplanted patients [J]. Pharmacogenet Genomics, 2013, 23(8): 445-448.
|
[15] |
Hesselink DA, van Schaik RH, van der Heiden IP, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus [J]. Clin Pharmacol Ther, 2003, 74(3): 245-254.
|
[16] |
Miura M, Satoh S, Kagaya H, et al. Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients [J]. Pharmacogenomics, 2011, 12(7): 977-984.
|
[17] |
Uesugi M, Hosokawa M, Shinke H, et al. Influence of cytochrome P450 (CYP) 3A4*1G polymorphism on the pharmacokinetics of tacrolimus, probability of acute cellular rejection, and mRNA expression level of CYP3A5 rather than CYP3A4 in living-donor liver transplant patients [J]. Biol Pharm Bull, 2013, 36(11): 1814-1821.
|
[18] |
Zuo XC, Ng CM, Barrett JS, et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis [J]. Pharmacogenet Genomics, 2013, 23(5): 251-261.
|
[19] |
Li CJ, Li L, Lin L, et al. Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients [J]. PLoS One, 2014, 9(1): e86206.
|
[20] |
Zhang JJ, Liu SB, Xue L, et al. The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients [J]. Int J Clin Pharmacol Ther, 2015, 53(9): 728-736.
|
[21] |
Stocco G, Cheok MH, Crews KR, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia [J]. Clin Pharmacol Ther, 2009, 85(2): 164-172.
|
[22] |
Sahasranaman S, Howard D, Roy S. Clinical pharmacology and pharmacogenetics of thiopurines [J]. Eur J Clin Pharmacol, 2008, 64(8): 753-767.
|
[23] |
FDA. New drug application [DB/OL]. 2014:
URL
|
[24] |
Colletti RB, Baldassano RN, Milov DE, et al. Variation in care in pediatric Crohn disease [J]. J Pediatr Gastroenterol Nutr, 2009, 49(3): 297-303.
|
[25] |
Ford LT, Berg JD. Thiopurine S-methyltransferase (TPMT) assessment prior to starting thiopurine drug treatment; a pharmacogenomic test whose time has come [J]. J Clin Pathol, 2010, 63(4): 288-295.
|
[26] |
Meggitt SJ, Gray JC, Reynolds NJ. Azathioprine dosed by thiopurine methyltransferase activity for moderate-to-severe atopic eczema: a double-blind, randomised controlled trial [J]. Lancet, 2006, 367(9513): 839-846.
|
[27] |
Sandborn WJ. Rational dosing of azathioprine and 6-mercaptopurine [J]. Gut, 2001, 48(5): 591-592.
|
[28] |
Relling MV, Gardner EE, Sandborn WJ, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing [J]. Clin Pharmacol Ther, 2011, 89(3): 387-391.
|
[29] |
Liang DC, Yang CP, Liu HC, et al. NUDT15 gene polymorphism related to mercaptopurine intolerance in Taiwan Chinese children with acute lymphoblastic leukemia [J]. Pharmacogenomics J, 2016, 16(6): 536-539.
|
[30] |
Chiengthong K, Ittiwut C, Muensri S, et al. NUDT15 c. 415C>T increases risk of 6-mercaptopurine induced myelosuppression during maintenance therapy in children with acute lymphoblastic leukemia [J]. Haematologica, 2016, 101(1): e24-e26.
|
[31] |
Yang SK, Hong M, Baek J, et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia [J]. Nat Genet, 2014, 46(9): 1017-1020.
|
[32] |
Zheng S, Tasnif Y, Hebert MF, et al. CYP3A5 gene variation influences cyclosporine A metabolite formation and renal cyclosporine disposition [J]. Transplantation, 2013, 95(6): 821-827.
|
[33] |
Zhu HJ, Yuan SH, Fang Y, et al. The effect of CYP3A5 polymorphism on dose-adjusted cyclosporine concentration in renal transplant recipients: a meta-analysis [J]. Pharmacogenomics J, 2011, 11(3): 237-246.
|
[34] |
Sun B, Guo Y, Gao J, et al. Influence of CYP3A and ABCB1 polymorphisms on cyclosporine concentrations in renal transplant recipients [J]. Pharmacogenomics, 2017, 18(16): 1503-1513.
|
[35] |
Zhang YT, Yang LP, Shao H, et al. ABCB1 polymorphisms may have a minor effect on ciclosporin blood concentrations in myasthenia gravis patients [J]. Br J Clin Pharmacol, 2008, 66(2): 240-246.
|
[36] |
Sharaki O, Zeid M, Moez P, et al. Impact of CYP3A4 and MDR1 gene (G2677T) polymorphisms on dose requirement of the cyclosporine in renal transplant Egyptian recipients [J]. Mol Biol Rep, 2015, 42(1): 105-117.
|
[37] |
Crettol S, Venetz JP, Fontana M, et al. Influence of ABCB1 genetic polymorphisms on cyclosporine intracellular concentration in transplant recipients [J]. Pharmacogenet Genomics, 2008, 18(4): 307-315.
|
[38] |
Lee J, Wang R, Yang Y, et al. The effect of ABCB1 C3435T polymorphism on cyclosporine dose requirements in kidney transplant recipients: a meta-analysis [J]. Basic Clin Pharmacol Toxicol, 2015, 117(2): 117-125.
|
[39] |
Santoro A, Felipe CR, Tedesco-Silva H, et al. Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients [J]. Pharmacogenomics, 2011, 12(9): 1293-1303.
|
[40] |
Sanchez-Lazaro I, Herrero MJ, Jordan-De Luna C, et al. Association of SNPs with the efficacy and safety of immunosuppressant therapy after heart transplantation [J]. Pharmacogenomics, 2015, 16(9): 971-979.
|
[41] |
Garcia M, Macias RM, Cubero JJ, et al. ABCB1 polymorphisms are associated with cyclosporine-induced nephrotoxicity and gingival hyperplasia in renal transplant recipients [J]. Eur J Clin Pharmacol, 2013, 69(3): 385-393.
|
[42] |
Li Y, Yan L, Shi Y, et al. CYP3A5 and ABCB1 genotype influence tacrolimus and sirolimus pharmacokinetics in renal transplant recipients [J]. Springerplus, 2015, 4: 637.
|
[43] |
Pascual T, Apellaniz-Ruiz M, Pernaut C, et al. Polymorphisms associated with everolimus pharmacokinetics, toxicity and survival in metastatic breast cancer [J]. PLoS One, 2017, 12(7): e0180192.
|
[44] |
Lesche D, Sigurdardottir V, Setoud R, et al. Influence of CYP3A5 genetic variation on everolimus maintenance dosing after cardiac transplantation [J]. Clin Transplant, 2015, 29(12): 1213-1220.
|
[45] |
Shah S, Harwood SM, Dohler B, et al. Inosine monophosphate dehydrogenase polymorphisms and renal allograft outcome [J]. Transplantation, 2012, 94(5): 486-491.
|
[46] |
Bouamar R, Hesselink DA, van Schaik RH, et al. Mycophenolic acid-related diarrhea is not associated with polymorphisms in SLCO1B nor with ABCB1 in renal transplant recipients [J]. Pharmacogenet Genomics, 2012, 22(6): 399-407.
|