切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (03) : 135 -137. doi: 10.3877/cma.j.issn.2095-3216.2020.03.010

所属专题: 文献

综述

人工智能在肾脏病理诊断中的应用
卓莉1, 邹古明1, 李文歌1,()   
  1. 1. 100029 北京,中日友好医院肾内科
  • 收稿日期:2019-07-29 出版日期:2020-06-28
  • 通信作者: 李文歌
  • 基金资助:
    国家自然科学基金(81870495)

Application of artificial intelligence in renal pathological diagnosis

Li Zhuo1, Guming Zou1, Wenge Li1,()   

  1. 1. Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
  • Received:2019-07-29 Published:2020-06-28
  • Corresponding author: Wenge Li
  • About author:
    Corresponding author: Li Wenge, Email:
引用本文:

卓莉, 邹古明, 李文歌. 人工智能在肾脏病理诊断中的应用[J]. 中华肾病研究电子杂志, 2020, 09(03): 135-137.

Li Zhuo, Guming Zou, Wenge Li. Application of artificial intelligence in renal pathological diagnosis[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(03): 135-137.

随着计算机技术和互联网的高速发展,基于深度学习的人工智能(artificial intelligence, AI)已经影响了病理学以及与其相关行业的工作模式。本文介绍了人工智能相关知识。由于目前肾脏病理数字切片资源有限,人工智能在肾脏组织病理学领域中的研究尚属起步阶段,但已经在肾小球数字化形态评价系统建立、预测慢性肾脏病预后方面做了很好的尝试。此外,还存在图像特征和临床资料的复杂性会影响AI诊断准确性、罕见肾脏疾病病例收集困难等情况。这些都是AI在肾脏病理诊断应用中所面临的问题,本文将逐一论述,并介绍可能的解决办法。

With the rapid development of computer technology and internet, artificial intelligence (AI) based on depth learning has affected the working mode of pathology and its related industries. This article introduced the knowledge of AI. At present, due to the limited resources of digital sections of renal pathology, the research of AI in renal histopathology is still in its infancy. Good attempts have been made to establish a digital glomerular morphological evaluation system and to predict the prognosis of chronic kidney disease. In addition, there are situations that the complexity of image features and clinical data will affect the accuracy of AI diagnosis, and that the cases collection of rare kidney diseases are difficult, etc. These are the problems faced by application of AI in the process of renal pathological diagnosis, which were discussed one by one together with their possible solutions.

图1 病理医师和人工智能专家参与病理图像人工智能识别流程图
[1]
郑闪,孙丰龙,张慧娟,等. 人工智能在肿瘤组织病理学的研究现状[J]. 中华肿瘤杂志,2018, 40(12): 885-889.
[2]
张世豪,冼丽英,高敏,等. 基于深度学习的人工智能在病理诊断的应用进展与展望[J]. 中国医学创新,2018, 15(25): 130-133.
[3]
Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-507.
[4]
Yu KH, Zhang C, Berry GJ, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features [J]. Nat Commun, 2016, 7: 12474.
[5]
邓杨,包骥. 数字病理中计算机辅助诊断研究展望[J]. 实用医院临床杂志,2017, 14(5): 10-12.
[6]
张楠,鲁海珍,应建明,等. 人工智能在诊断病理中的应用进展[J]. 诊断病理学杂志,2019, 26(3): 183-185.
[7]
许燕,汤烨,闫雯,等. 病理人工智能的现状和展望[J]. 中华病理学杂志,2017, 46(9): 593-595.
[8]
Barisoni L, Nast CC, Jennette JC, et al. Digital pathology evaluation in the multicenter Nephrotic Syndrome Study Network (NEPTUNE) [J]. Clin J Am Soc Nephrol, 2013, 8(8): 1449-1459.
[9]
Rosenberg AZ, Palmer M, Merlino L, et al. The application of digital pathology to improve accuracy in glomerular enumeration in renal biopsies [J]. PLoS One, 2016, 11(6): e0156441.
[10]
Zee J, Hodgin JB, Mariani LH, et al. Reproducibility and feasibility of strategies for morphologic assessment of renal biopsies using the nephrotic syndrome study network digital pathology scoring system [J]. Arch Pathol Lab Med, 2018, 142(5): 613-625.
[11]
Royal V, Zee J, Liu Q, et al. Ultrastructural characterization of proteinuric patients predicts clinical outcomes [J]. J Am Soc Nephrol, 2020, 31(4): 841-854.
[12]
Mariani LH, Martini S, Barisoni L, et al. Interstitial fibrosis scored on whole-slide digital imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies [J]. Nephrol Dial Transplant, 2018, 33(2): 310-318.
[13]
Simon O, Yacoub R, Jain S, et al. Multi-radial LBP features as a tool for rapid glomerular detection and assessment in whole slide histopathology images [J]. Sci Rep, 2018, 8(1): 2032.
[14]
Bukowy JD, Dayton A, Cloutier D, et al. Region-based convolutional neural nets for localization of glomeruli in trichrome-stained whole kidney sections [J]. J Am Soc Nephrol, 2018, 29(8): 2081-2088.
[15]
Kolachalama VB, Singh P, Lin CQ, et al. Association of pathological fibrosis with renal survival using deep neural networks [J]. Kidney Int Rep, 2018, 3(2): 464-475.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[5] 张辉, 蔡敏, 黄湘雅. 数字化技术和人工智能在上颌窦底提升术的临床应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 244-252.
[6] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[7] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[8] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[9] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[10] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[11] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[12] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[13] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[14] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要