[1] |
Guo W, Yang D, Wu D, et al. Hyperuricemia and long-term mortality in patients with acute myocardial infarction undergoing percutaneous coronary intervention [J]. Ann Transl Med, 2019, 7(22): 636.
|
[2] |
Hong Q, Wu D, Chen XM, et al. Cloning and sequence analysis of human uric acid transporter gene [J]. Di Yi Jun Yi Da Xue Xue Bao, 2005, 25(6): 623-629.
|
[3] |
Puig JG, Torres RJ, De Miguel E, et al. Uric acid excretion in healthy subjects: a nomogram to assess the mechanisms underlying purine metabolic disorders [J]. Metabolism, 2012, 61(4): 512-518.
|
[4] |
Yano H, Tamura Y, Kobayashi K, et al. Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease [J]. Clin Exp Nephrol, 2014, 18(1): 50-55.
|
[5] |
Verboom K, Everaert C, Bolduc N, et al. SMARTer single cell total RNA sequencing [J]. Nucleic Acids Res, 2019, 47(16): e93.
|
[6] |
Zang L, Palmer Toy D, Hancock WS, et al. Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection, LC-MS, and 16O/18O isotopic labeling [J]. J Proteome Res, 2004, 3(3): 604-612.
|
[7] |
Liao J, Yu Z, Chen Y, et al. Single-cell RNA sequencing of human kidney [J]. Sci Data, 2020, 7(1): 4.
|
[8] |
Lindstrom NO, De Sena Brandine G, Ransick A, et al. Single-cell RNA sequencing of the adult mouse kidney: from molecular cataloging of cell types to disease-associated predictions [J]. Am J Kidney Dis, 2019, 73(1): 140-142.
|
[9] |
Wu H, Humphreys BD. The promise of single-cell RNA sequencing for kidney disease investigation [J]. Kidney Int, 2017, 92(6): 1334-1342.
|
[10] |
Limbutara K, Chou CL, Knepper MA. Quantitative proteomics of all 14 renal tubule segments in rat [J]. J Am Soc Nephrol, 2020, 31(6): 1255-1266.
|
[11] |
Wu H, Uchimura K, Donnelly EL, et al. Comparative analysis and refinement of human psc-derived kidney organoid differentiation with single-cell transcriptomics [J]. Cell Stem Cell, 2018, 23(6): 869-881.
|
[12] |
Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data [J]. Cell, 2019, 177(7): 1888-1902.
|
[13] |
Park J, Shrestha R, Qiu C, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease [J]. Science, 2018, 360(6390): 758-763.
|
[14] |
Young MD, Mitchell TJ, Vieira Braga FA, et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors [J]. Science, 2018, 361(6402): 594-599.
|
[15] |
Cao J, Wang C, Zhang G, et al. Incidence and simple prediction model of hyperuricemia for urban han chinese adults: a prospective cohort study [J]. Int J Environ Res Public Health, 2017, 14(1): 67.
|
[16] |
Park SH, Shin WY, Lee EY, et al. The impact of hyperuricemia on in-hospital mortality and incidence of acute kidney injury in patients undergoing percutaneous coronary intervention [J]. Circ J, 2011, 75(3): 692-697.
|
[17] |
Braga F, Pasqualetti S, Ferraro S, et al. Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis [J]. Clin Chem Lab Med, 2016, 54(1): 7-15.
|
[18] |
洪权,吴镝,陈香美,等. 人尿酸转运蛋白在肾小管上皮细胞的定位表达研究[J]. 中华肾脏病杂志,2005, 21(9): 527-533.
|
[19] |
Wu H, Malone AF, Donnelly EL, et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response [J]. J Am Soc Nephrol, 2018, 29(8): 2069-2080.
|
[20] |
Hoque KM, Dixon EE, Lewis RM, et al. The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion [J]. Nat Commun, 2020, 11(1): 2767.
|
[21] |
Togawa N, Miyaji T, Izawa S, et al. A Na+-phosphate cotransporter homologue (SLC17A4 protein) is an intestinal organic anion exporter [J]. Am J Physiol Cell Physiol, 2012, 302(11): C1652-C1660.
|
[22] |
Chen J, Suo S, Tam PP, et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq [J]. Nat Protoc, 2017, 12(3): 566-580.
|