切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (05) : 232 -235. doi: 10.3877/cma.j.issn.2095-3216.2020.05.009

所属专题: 文献

综述

蛋白质组学及代谢组学在糖尿病肾病研究中的应用
丁潇楠1, 韩秋霞2, 张冬2, 朱晗玉2,()   
  1. 1. 100853 北京,解放军医学院;100853 北京,解放军总医院第一医学中心肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室
    2. 100853 北京,解放军总医院第一医学中心肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室
  • 收稿日期:2020-04-15 出版日期:2020-10-28
  • 通信作者: 朱晗玉
  • 基金资助:
    国家重点研发计划(2016YFC1305500); 国家自然科学基金项目(61971441,61671479)

Application of proteomics and metabolomics in the study of diabetic kidney disease

Xiaonan Ding1, Qiuxia Han2, Dong Zhang2, Hanyu Zhu2,()   

  1. 1. Medical School of Chinses PLA, Beijing 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
    2. Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
  • Received:2020-04-15 Published:2020-10-28
  • Corresponding author: Hanyu Zhu
  • About author:
    Corresponding author: Zhu Hanyu, Email:
引用本文:

丁潇楠, 韩秋霞, 张冬, 朱晗玉. 蛋白质组学及代谢组学在糖尿病肾病研究中的应用[J/OL]. 中华肾病研究电子杂志, 2020, 09(05): 232-235.

Xiaonan Ding, Qiuxia Han, Dong Zhang, Hanyu Zhu. Application of proteomics and metabolomics in the study of diabetic kidney disease[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(05): 232-235.

糖尿病肾病是终末期肾病的最主要原因之一,已成为世界公共卫生的重大难题,解决临床诊疗方面的争议成为急需。本文综述了利用蛋白质组学及代谢组学技术在糖尿病肾病诊断及鉴别诊断、疾病进展、预后判断及疗效评估方面的研究进展。并对两种组学技术的异同进行阐述,在当代大数据及人工智能的背景下展望了利用蛋白质组学及代谢组学进行整合组学和精准医学研究。

Diabetic kidney disease is one of the most important causes of end-stage renal disease, and has become a major problem in public health in the world. It is a priority to resolve disputes in clinical diagnosis and treatment of the disease. This article reviewed the research progress in the diagnosis and differential diagnosis, disease progression, prognosis judgment, and efficacy evaluation of diabetic kidney disease, by means of proteomics and metabolomics. Besides, it also explained the similarities and differences between the two omics technologies, and prospected the use of proteomics and metabolomics for research of integrated omics and precision medicine in the context of contemporary big data and artificial intelligence.

[1]
GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the global burden of disease study 2017 [J]. Lancet, 2020, 395(10225): 709-733.
[2]
Doshi S, Friedman A. Diagnosis and management of type 2 diabetic kidney disease [J]. Clin J Am Soc Nephrol, 2017, 12(8): 1366-1373.
[3]
Ma S, Li Y, Ma C, et al. Challenges and advances in the fabrication of monolithic bioseparation materials and their applications in proteomics research [J]. Adv Mater, 2019, 31(50): e1902023.
[4]
Donnelly D, Rawlins C, DeHart C, et al. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry [J]. Nat Methods, 2019, 16(7): 587-594.
[5]
Wishart DS, Feunang YD, Marcu A, et al. HMDB 4.0: the human metabolome database for 2018 [J]. Nucleic Acids Res, 2018, 46(D1): D608-D617.
[6]
Hirao Y, Saito S, Fujinaka H, et al. Proteome profiling of diabetic mellitus patient urine for discovery of biomarkers by comprehensive MS-based proteomics [J]. Proteomes, 2018, 6(1): 9.
[7]
Currie G, Delles C. Urinary proteomics for diagnosis and monitoring of diabetic nephropathy [J]. Curr Diab Rep, 2016, 16(11): 104.
[8]
Thippakorn C, Schaduangrat N, Nantasenamat C. Proteomic and bioinformatic discovery of biomarkers for diabetic nephropathy [J]. EXCLI J, 2018, 17: 312-330.
[9]
Glassock R. Con: kidney biopsy: an irreplaceable tool for patient management in nephrology [J]. Nephrol Dial Transplant, 2015, 30(4): 528-531.
[10]
BenAmeur R, Molina L, Bolvin C, et al. Proteomic approaches for discovering biomarkers of diabetic nephropathy [J]. Nephrol Dial Transplant, 2010, 25(9): 2866-2875.
[11]
Kim HJ, Cho EH, Yoo JH, et al. Proteome analysis of serum from type 2 diabetics with nephropathy [J]. J Proteome Res, 2007, 6(2): 735-743.
[12]
Rossing K, Mischak H, Dakna M, et al. Urinary proteomics in diabetes and CKD [J]. J Am Soc Nephrol, 2008, 19(7): 1283-1290.
[13]
Good D, Zürbig P, Argilés A, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease [J]. Mol Cell Proteomics, 2010, 9(11): 2424-2437.
[14]
Siwy J, Schanstra J, Argiles A, et al. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy [J]. Nephrol Dial Transplant, 2014, 29(8): 1563-1570.
[15]
Papale M, Paolo SD, Magistroni R, et al. Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy [J]. Diabetes Care, 2010, 33(11): 2409-2415.
[16]
Wei PZ, Fung WW, Jackkit CN, et al. Metabolomic changes of human proximal tubular cell line in high glucose environment [J]. Sci Rep, 2019, 9(1): 16617.
[17]
Lagies S, Pichler R, Bork T, et al. Impact of diabetic stress conditions on renal cell metabolome [J]. Cells, 2019, 8(10): 1141.
[18]
Tofte N, Vogelzangs N, Mook-Kanamori D, et al. Plasma metabolomics identifies markers of impaired renal function: a meta-analysis of 3,089 persons with type 2 diabetes [J]. J Clin Endocrinol Metab, 2020, 105(7): dgaa173.
[19]
Sharma K, Karl B, Mathew AV, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease [J]. J Am Soc Nephrol, 2013, 24(11): 1901-1912.
[20]
Liu JJ, Ghosh S, Kovalik JP, et al. Profiling of plasma metabolites suggests altered mitochondrial fuel usage and remodeling of sphingolipid metabolism in individuals with type 2 diabetes and kidney disease [J]. Kidney Int Rep, 2017, 2(3): 470-480.
[21]
Saulnier B, Feigerlova E, Halimi J, et al. Urinary lysophopholipids are increased in diabetic patients with nephropathy [J]. J Diabetes Complicat, 2017, 31(7): 1103-1108.
[22]
Zhu C, Liang QL, Hu P, et al. Phospholipidomic identification of potential plasma biomarkers associated with type 2 diabetes mellitus and diabetic nephropathy [J]. Talanta, 2011, 85(4): 1711-1720.
[23]
American Diabetes Association. Microvascular complications and foot care: standards of medical care in diabetes-2020 [J]. Diabetes Care, 2020, 43(Suppl 1): S135-S151.
[24]
Cañadas-Garre M, Anderson K, McGoldrick J, et al. Proteomic and metabolomic approaches in the search for biomarkers in chronic kidney disease [J]. J Proteomics, 2019, 193: 93-122.
[25]
Tofte N, Lindhardt M, Adamova K, et al. Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): a prospective observational study and embedded randomised placebo-controlled trial [J]. Lancet Diabetes Endocrinol, 2020, 8(4): 301-312.
[26]
Siwy J, Klein T, Rosler M, et al. Urinary proteomics as a tool to identify kidney responders to dipeptidyl peptidase-4 inhibition: a hypothesis-generating analysis from the MARLINA-T2D trial [J]. Proteomics Clin Appl, 2019, 13(2): e1800144.
[27]
Liu J, Liu S, Wong M, et al. Urinary haptoglobin predicts rapid renal function decline in asians with type 2 diabetes and early kidney disease [J]. J Clin Endocrinol Metab, 2016, 101(10): 3794-3802.
[28]
Vander K, Tempels F, Ismail N, et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study) [J]. Metabolomics, 2012, 8(1): 109-119.
[29]
Xu L, Hu C, Liu Y, et al. Development of a sensitive and quantitative method for the identification of two major furan fatty acids in human plasma [J]. J Lipid Res, 2020, 61(4): 560-569.
[30]
Du Y, Xu B, Deng X, et al. Predictive metabolic signatures for the occurrence and development of diabetic nephropathy and the intervention of Ginkgo biloba leaves extract based on gas or liquid chromatography with mass spectrometry [J]. J Pharm Biomed Anal, 2019, 166: 30-39.
[31]
Karczewski K, Snyder M. Integrative omics for health and disease [J]. Nat Rev Genet, 2018, 19(5): 299-310.
[1] 何梦媛, 胡鸿保, 谢庆云, 廖冬发, 王维. 股骨头坏死的代谢组学的相关研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 379-382.
[2] 诸琴红, 夏典平, 葛芳娣, 崔大伟. 抗氧化和炎症指标在糖尿病肾病患者中的临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 307-311.
[3] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[4] 费一鸣, 刘卓, 张丽娟. 组学分析在早产分子机制中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 504-510.
[5] 周涵, 武胡雯, 张培深, 邓晗彬, 范闻轩, 李嘉诚, 程少文. 蛋白质组学在慢性难愈合创面研究中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 536-540.
[6] 刘雨晴, 顾永春, 孟凡文, 张素萍. 人牙源干细胞数据独立采集蛋白质组学方法的建立[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 12-21.
[7] 中华医学会器官移植学分会, 中国医疗保健国际交流促进会肾脏移植学分会. 中国胰肾联合移植临床诊疗指南[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 129-147.
[8] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[9] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[10] 白璐, 李青霞, 冯一卓, 刘雪倩, 刘若琪, 曲卓敏, 赵凌霞. 丁酸盐治疗糖尿病肾病的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 303-308.
[11] 谭莹, 朱鹏飞, 李楠, 黄莉吉, 周希乔, 严倩华, 余江毅. 火把花根片联合黄葵胶囊治疗高或极高进展风险糖尿病肾病的临床探索[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 171-177.
[12] 黄莉吉, 王婷, 朱鹏飞, 刘敬顺, 余江毅, 谢绍锋. 芪葵颗粒联合火把花根片对G3A3期糖尿病肾病的疗效及对血清miRNA-21的影响[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1247-1252.
[13] 邬秋俊, 向茜. 甘油三酯-葡萄糖指数与2型糖尿病微血管并发症相关性的研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(10): 1109-1112.
[14] 郑旭, 韩燕燕, 高珊, 李翀. 基于非标记定量蛋白质组学技术分析消岩汤干预人肺腺癌细胞后蛋白表达谱特征的影响[J/OL]. 中华针灸电子杂志, 2024, 13(01): 18-23.
[15] 张梅, 陈卉, 李转霞, 王瑞, 李林娟. Metrnl和NLRP3炎症小体:糖尿病肾病的潜在诊断标志物[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 193-199.
阅读次数
全文


摘要