切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (06) : 267 -271. doi: 10.3877/cma.j.issn.2095-3216.2020.06.006

所属专题: 文献

综述

NLRP3炎症小体介导足细胞损伤机制的研究进展
孙静宜1, 刘绪言1, 蒋伟1,()   
  1. 1. 266003 青岛,青岛大学附属医院肾内科
  • 收稿日期:2020-04-22 出版日期:2020-12-28
  • 通信作者: 蒋伟
  • 基金资助:
    国家自然科学基金(81870494); 中华医学会临床科研基金(20010080800)

Research progress on the mechanism of podocyte injury mediated by NLRP3 inflammasome

Jingyi Sun1, Xuyan Liu1, Wei Jiang1,()   

  1. 1. Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
  • Received:2020-04-22 Published:2020-12-28
  • Corresponding author: Wei Jiang
  • About author:
    Corresponding author: Jiang Wei, Email:
引用本文:

孙静宜, 刘绪言, 蒋伟. NLRP3炎症小体介导足细胞损伤机制的研究进展[J]. 中华肾病研究电子杂志, 2020, 09(06): 267-271.

Jingyi Sun, Xuyan Liu, Wei Jiang. Research progress on the mechanism of podocyte injury mediated by NLRP3 inflammasome[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(06): 267-271.

足细胞损伤是肾源性蛋白尿的主要病理基础之一,在肾脏疾病的发生发展乃至预后中占据重要地位。近年来Nod样受体蛋白3(Nod-like receptor protein 3, NLRP3)炎症小体介导的足细胞损伤成为一个研究热点。NLRP3炎症小体能够被多种途径激活,继而活化Caspase-1、促进炎症因子IL-1β、IL-18成熟与分泌,以及改变相关特异性蛋白的表达水平,最终导致足细胞损伤、肾小球硬化和终末期肾病。本文将近年来足细胞损伤中NLRP3炎症小体激活途径及信号通路作一综述,以期为足细胞损伤相关性肾脏疾病预防及治疗提供新的靶点。

Podocyte injury is one of the main pathological bases of renal-derived proteinuria, and occupies an important position in the occurrence, progression, and prognosis of renal diseases. In recent years, Nod-like receptor protein 3 (NLRP3) inflammasome-mediated podocyte injury has become a research hotspot. NLRP3 inflammasome can be activated by multiple pathways, which in turn activates caspase-1, promotes the maturation and secretion of inflammatory factors IL-1β and IL-18, and changes the expression levels of related specific proteins, ultimately leading to podocyte injury, glomerulosclerosis, and end-stage renal disease. This article reviewed the research on activation pathways and signal pathways of NLRP3 inflammasome in podocyte injury in recent years, with a view to providing new targets for the prevention and treatment of podocyte injury-related renal diseases.

图1 NLRP3炎症小体的结构和功能
图2 足细胞NLRP3炎症小体激活通路示意图
[1]
Ma RX, Liu LQ, Jiang W, et al. FK506 ameliorates podocyte injury in type 2 diabetic nephropathy by down-regulating TRPC6 and NFAT expression [J]. Int J Clin Exp Pathol, 2015, 8(11): 14063-14074.
[2]
王彤,马瑞霞,武国华,等. 他克莫司通过上调自噬作用保护2型糖尿病大鼠足细胞[J]. 中华肾脏病杂志,2016, 32(3): 195-199.
[3]
Ma R, Jiang W, Li Z, et al. Intrarenal macrophage infiltration induced by T cells is associated with podocyte injury in lupus nephritis patients [J]. Lupus, 2016, 25(14): 1577-1586.
[4]
Zhang C, Boini KM, Xia M, et al. Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia [J]. Hypertension, 2012, 60(1): 154-162.
[5]
Wang W, Ding XQ, Gu TT, et al. Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377 [J]. Free Radical Bio Med, 2015, 83: 214-226.
[6]
Singh GB, Kshirasagar N, Patibandla S, et al. Nicotine instigates podocyte injury via NLRP3 inflammasomes activation [J]. Aging (Albany NY), 2019, 11(24): 12810-12821.
[7]
Haque S, Lan XQ, Wen HX, et al. HIV promotes NLRP3 inflammasome complex activation in murine HIV-associated nephropathy [J]. Am J Pathol, 2016, 186(2): 347-358.
[8]
Boini KM, Xia M, Koka S, et al. Instigation of NLRP3 inflammasome activation and glomerular injury in mice on the high fat diet: role of acid sphingomyelinase gene [J]. Oncotarget, 2016, 7(14): 19031-19044.
[9]
Abais JM, Zhang C, Xia M, et al. NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia [J]. Antioxid Redox Sing, 2013, 18(13): 1537-1548.
[10]
Conley SM, Abais-Battad JM, Yuan XX, et al. Contribution of guanine nucleotide exchange factor Vav2 to NLRP3 inflammasome activation in mouse podocytes during hyperhomocysteinemia [J]. Free Radical Bio Med, 2017, 106: 236-244.
[11]
Abais JM, Xia M, Li G, et al. Contribution of endogenously produced reactive oxygen species to the activation of podocyte NLRP3 inflammasomes in hyperhomocysteinemia [J]. Free Radical Bio Med, 2014, 67: 211-220.
[12]
Abais JM, Xia M, Li G, et al. Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia [J]. J Biol Chem, 2014, 289(39): 27159-27168.
[13]
Gao P, Meng X, Su H, et al. Thioredoxin-interacting protein mediates NALP3 inflammasome activation in podocytes during diabetic nephropathy [J]. Biochim Biophys Acta, 2014, 1843(11): 2448-2460.
[14]
Hong JN, Li GB, Zhang QH, et al. D-ribose induces podocyte NLRP3 in ammasome activation and glomerular injury via AGEs/RAGE pathway [J]. Front Cell Dev Biol, 2019, 10(30): 849-860.
[15]
Yeh WJ, Yang HY, Pai MH, et al. Long-term administration of advanced glycation end product stimulates the activation of NLRP3 inflammasome and sparking the development of renal injury [J]. J Nutr Biochem, 2017, 39: 68-76.
[16]
Yan J, Li Y, Yang H, et al. Interleukin-17A participates in podocyte injury by inducing IL-1β secretion through ROS-NLRP3 inflammasome-caspase-1 pathway [J]. Scand J Immunol, 2018, 87(4): e12645.
[17]
Zhao M, Bai M, Ding GX, et al. Angiotensin II stimulates the NLRP3 inflammasome to induce podocyte injury and mitochondrial dysfunction [J]. Kidney Dis (Basel), 2018, 4(2): 83-94.
[18]
Fu R, Guo C, Wang S, et al. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis [J]. Arthritis Rheumatol, 2017, 69(8): 1636-1646.
[19]
Singh GB, Kshirasagar N, Patibandla S, et al. Nicotine instigates podocyte injury via NLRP3 inflammasomes activation [J]. Aging (Albany NY), 2019, 11(24): 12810-12821.
[20]
Mi B, Ying C, Min Z, et al. NLRP3 inflammasome activation contributes to aldosterone-induced podocyte injury [J]. Am J Physiol Renal Physiol, 2017, 312(4): F556-F564.
[21]
Hou XX, Dong HR, Sun LJ, et al. Purinergic 2X7 receptor is involved in the podocyte damage of obesity-related glomerulopathy via activating nucleotide-binding and oligomerization domain-like receptor protein 3 inflammasome [J]. Chin Med J (Engl), 2018, 131(22): 2713-2725.
[22]
Wang C, Hou XX, Rui HL, et al. Artificially cultivated Ophiocordyceps sinensis alleviates diabetic nephropathy and its podocyte injury via inhibiting P2X7R expression and NLRP3 inflammasome activation [J]. J Diabetes Res, 2018, 2018: 1390418.
[23]
Yang XJ, Wu Y, Li QQ, et al. CD36 promotes podocyte apoptosis by activating the pyrin domain-containing-3 (NLRP3) inflammasome in primary nephrotic syndrome [J]. Med Sci Monitor, 2018, 24: 6832-6839.
[24]
Kagan JC, Horng T. NLRP3 inflammasome activation: CD36 serves double duty [J]. Nat Immunol, 2013, 14(8): 772-774.
[25]
Zhao J, Rui HL, Yang M, et al. CD36-mediated lipid accumulation and activation of NLRP3 inflammasome lead to podocyte injury in obesity-related glomerulopathy [J]. Media Inflamm, 2019, 2019: 3172647.
[26]
Boini KM, Xia M, Abais JM, et al. Activation of inflammasomes in podocyte injury of mice on the high fat diet: effects of ASC gene deletion and silencing [J]. Biochim Biophys Acta, 2014, 1843(5): 836-845.
[27]
Liu B, Lu R, Li H, et al. Zhen-wu-tang ameliorates membranous nephropathy rats through inhibiting NF-κB pathway and NLRP3 inflammasome [J]. Phytomedicine, 2019, 59: 152913.
[28]
Yi H, Peng R, Zhang LY, et al. LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy [J]. Cell Death Dis, 2017, 8(2): e2583.
[29]
Ma CH, Kang LL, Ren HM, et al. Simiao pill ameliorates renal glomerular injury via increasing Sirt1 expression and suppressing NF-κB/NLRP3 inflammasome activation in high fructose-fed rats [J]. J Ethnopharmacol, 2015, 172: 108-117.
[30]
Hua KF, Yang SM, Kao TY, et al. Osthole mitigates progressive IgA nephropathy by inhibiting reactive oxygen species generation and NF-κB/NLRP3 pathway [J]. PLoS One, 2013, 8(10): e77794.
[31]
Chen L, Lan Z. Polydatin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation by inhibiting NF-κB/NLRP3 inflammasome activation via the AMPK/SIRT1 pathway [J]. Food Funct, 2017, 8(5): 1785-1792.
[32]
Yang SM, Ka SM, Wu HL, et al. Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF-κB/NLRP3 inflammasome-mediated inflammation, enhancement of NRF2 antioxidant activity and inhibition of apoptosis [J]. Diabetologia, 2014, 57(2): 424-434.
[33]
Guo CH, Fu R, Zhou MJ, et al. Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation [J]. J Autoimmun, 2019, 103: 102286.
[34]
Peng W, Pei GQ, Tang Y, et al. IgA1 deposition may induce NLRP3 expression and macrophage transdifferentiation of podocyte in IgA nephropathy [J]. J Transl Med, 2019, 17(1): 406.
[35]
Li G, Chen Z, Bhat OM, et al. NLRP3 inflammasome as a novel target for docosahexaenoic acid metabolites to abrogate glomerular injury [J]. J Lipid Res, 2017, 58(6): 1080-1090.
[36]
Li G, Xia M, Abais J, et al. Protective action of anandamide and its COX-2 metabolite against L-homocysteine-induced NLRP3 inflammasome activation and injury in podocytes [J]. J Pharmacol Exp Ther, 2016, 358(1): 61-70.
[37]
Shahzad K, Bock F, Aldabet MM, et al. Stabilization of endogenous Nrf2 by minocycline protects against Nlrp3-inflammasome induced diabetic nephropathy [J]. Sci Rep, 2016, 6: 34228.
[38]
Ren Y, Wang D, Lu F, et al. Coptidis Rhizoma inhibits NLRP3 inflammasome activation and alleviates renal damage in early obesity-related glomerulopathy [J]. Phytomedicine, 2018, 49: 52-65.
[1] 张伟. 牙及牙槽外科:舒适治疗的先锋[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 386-388.
[2] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[3] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[4] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[5] 张海涛, 康婵娟, 翟静洁. 胰管支架置入治疗急性胆源性胰腺炎效果观察[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 654-657.
[6] 杨雪, 张伟, 尚培中, 宋创业, 尚丹丹, 张蔚. 胆囊十二指肠瘘结石经瘘口排出后自愈一例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 707-708.
[7] 孔博, 张璟, 吕珂. 超声技术在复杂腹壁疝诊治中的作用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 670-673.
[8] 姜明, 罗锐, 龙成超. 闭孔疝的诊断与治疗:10年73例患者诊疗经验总结[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 706-710.
[9] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[10] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[11] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[12] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[15] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
阅读次数
全文


摘要