切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2024, Vol. 13 ›› Issue (04) : 181 -187. doi: 10.3877/cma.j.issn.2095-3216.2024.04.001

论著

短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究
孙婧婷1, 李娜2, 罗明辉1, 高瑶瑶2, 白义行2, 朱国贞3,()   
  1. 1. 030000 太原,山西医科大学公共卫生学院;030000 太原,山西医科大学
    2. 030000 太原,山西医科大学
    3. 030001 太原,山西医科大学第二医院肾内科
  • 收稿日期:2023-08-24 出版日期:2024-08-28
  • 通信作者: 朱国贞
  • 基金资助:
    山西省自然科学研究面上项目(202103021224420)

Effect and mechanism of short-chain fatty acids on inflammation and fibrosis of mice with renal ischemia-reperfusion injury

Jingting Sun1, Na Li2, Minghui Luo1, Yaoyao Gao2, Yihang Bai2, Guozhen Zhu3,()   

  1. 1. Shanxi Medical University School of Public Health, Taiyuan 030000; Shanxi Medical University, Taiyuan 030000; China
    2. Shanxi Medical University, Taiyuan 030000; China
    3. Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan 030001
  • Received:2023-08-24 Published:2024-08-28
  • Corresponding author: Guozhen Zhu
引用本文:

孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.

Jingting Sun, Na Li, Minghui Luo, Yaoyao Gao, Yihang Bai, Guozhen Zhu. Effect and mechanism of short-chain fatty acids on inflammation and fibrosis of mice with renal ischemia-reperfusion injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(04): 181-187.

目的

探讨短链脂肪酸(SCFAs)对小鼠肾损伤后炎症及纤维化的影响及其作用机制。

方法

采用双侧肾动脉夹闭25 min诱导缺血再灌注(I/R)肾损伤建立小鼠肾脏纤维化模型后,小鼠随机分为缺血再灌注组(I/R组)、短链脂肪酸组(I/R+SCFAs组)和短链脂肪酸合并抗CD25单克隆抗体组(I/R+SCFAs+anti-CD25组),并设假手术组(Sham组),每组6只。I/R+SCFAs组和I/R+SCFAs+anti-CD25组小鼠在术前1周连续饮用SCFAs溶液,且I/R+SCFAs+anti-CD25组小鼠在术前2 d和手术当天给予腹腔注射anti-CD25;Sham组小鼠只分离肾动脉不进行夹闭。建模28 d后收集各组小鼠肾组织,进行病理学检测,免疫组织化学检测CD68、肿瘤坏死因子-α(TNF-α)、细胞间黏附分子-1(ICAM-1)、叉头盒转录因子P3(Foxp3)和转录因子维甲酸相关孤儿受体γt(RORγt)的表达,Western印迹检测各组肾组织中Toll样受体4(TLR4)、髓样分化因子88(MyD88)和核转录因子κB p65(NF-κB p65)及α-平滑肌肌动蛋白(α-SMA)等蛋白表达水平。

结果

与Sham组相比,I/R组小鼠病理损伤较重,肾小管间质纤维化增多,免疫组织化学检测显示肾组织CD68、TNF-α、ICAM-1表达显著升高(P均<0.05),Western印迹检测TLR4、MyD88、NF-κB p65、α-SMA蛋白表达水平显著增多(P均<0.05)。与I/R组相比,I/R+SCFAs组小鼠肾纤维化程度减轻,肾组织的CD68、TNF-α、ICAM-1表达降低,而且TLR4、MyD88、NF-κB p65、α-SMA蛋白表达水平亦降低(P均<0.05)。与I/R+SCFAs组相比,I/R+SCFAs+anti-CD25组病理损伤加重,Foxp3表达减少,而TNF-α、ICAM-1、RORγt表达升高(P均<0.05),TLR4、MyD88、NF-κB p65、α-SMA蛋白表达水平有所升高。

结论

SCFAs可能通过TLR4/MyD88/NF-κB通路抑制炎症因子产生,从而减轻肾脏炎症反应和肾纤维化。

Objective

To explore the effect and mechanism of short-chain fatty acid (SCFAs) on inflammation and fibrosis of mice with renal ischemia-reperfusion (I/R) injury.

Methods

The mouse model of renal fibrosis was established by I/R injury induced by bilateral renal artery clamping for 25 minutes. The successfully modeled mice were randomly divided into I/R group, short-chain fatty acid (I/R+ SCFAs) group, SCFAs plus anti-CD25 monal clonal antibody (I/R+ SCFAs+ anti-CD25) group with 6 mice in each group. Besides, there was also a sham operation group in which renal arteries of the mice were isolated without clamping. Mice of the I/R+ SCFAs group and the I/R+ SCFAs+ anti-CD25 group began to drink SCFAs solution continuously one week before the operation, and I/R+ SCFAs+ anti-CD25 group also received intraperitoneal injection of anti-CD25 two days before operation and on the day after the operation. After 28 days of the modeling, kidney tissues of the mice in each group were collected for pathological detection. The expression of CD68, tumor necrosis factor α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), forkhead box transcription factor P3 (Foxp3), and transcription factor retinoic-related orphan receptor γt (RORγt) were detected by immunohistochemistry. Western blotting was applied to detect the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear transcription factor κB p65 (NF-κB p65) and α-SMA in renal tissues of all groups.

Results

Compared with sham operation group, the I/R group showed more serious renal pathological injury with renal tubule interstitial fibrosis being increased, and the expressions of CD68, TNF-α, and ICAM-1 in renal tissues were significantly increased in immunohistochemical detection (all P<0.05), while the expression levels of TLR4, MyD88, NF-κB p65, and α-SMA were significantly increased in Western blotting (all P<0.05). Compared with the I/R group, the I/R+ SCFAs group displayed lower level of renal fibrosis, and lower expressions of CD68, TNF-α, and ICAM-1 in renal tissues, while the protein expression levels of TLR4, MyD88, NF-κB p65, and α-SMA were also decreased (all P<0.05). Compared with the I/R+ SCFAs, the I/R+ SCFAs+ anti-CD25 group showed more serious pathological damage, with the Foxp3 expression being decreased, while the expressions of TNF-α, ICAM-1, and RORγt were increased (all P<0.05), and the expression levels of TLR4, MyD88, NF-κB p65, and α-SMA did not show a significant increase.

Conclusion

SCFAs may inhibit the production of inflammatory factors through the TLR4/MyD88/NF-κB pathway, thereby alleviating renal inflammation and renal fibrosis.

图1 动物实验流程图注:-d7:术前7 d;-d2:术前2 d;d0、d28:指手术当天和术后28 d;sham:假手术;I/R:缺血再灌注建模;SCFAs:短链脂肪酸
图2 各组小鼠肾脏病理组织学变化及半定量分析注:A:各组小鼠肾组织HE染色(×400);B:各组小鼠肾组织Masson染色(×400);C:肾组织损伤评分;D:肾组织Masson染色阳性面积定量;与Sham组相比较,aP<0.05;与I/R组相比,bP<0.05;与I/R+SCFAs组比较,cP<0.001
图3 各组小鼠肾组织免疫组化染色代表性图片及半定量分析(×400)注:A:肾组织CD68免疫组化染色及阳性面积半定量分析(×400);B:TNF-α免疫组化染色及阳性面积半定量分析(×400):C:ICAM-1免疫组化染色及阳性面积半定量分析(×400);D:Foxp3免疫组化染色及阳性面积半定量分析(×400);E:RORγt免疫组化染色及阳性面积半定量分析(×400);与Sham组相比较,aP<0.05;与I/R组相比,bP<0.05;与I/R+SCFAs组比较,cP<0.05
图4 各组小鼠肾组织Western印迹检测TLR4、MyD88、NF-κB p65、α-SMA蛋白表达及半定量分析注:A:肾组织TLR4、MyD88、NF-κB p65、α-SMA Western印迹检测结果;B:各组小鼠肾组织TLR4蛋白表达分析;C:各组小鼠肾组织MyD88蛋白表达分析;D:各组小鼠肾组织NF-κB p65蛋白表达分析;E:各组小鼠肾组织α-SMA蛋白表达分析;与Sham组相比较,aP<0.05;与I/R组相比,bP<0.01
[1]
Pickkers P, Darmon M, Hoste E, et al. Acute kidney injury in the critically ill: an updated review on pathophysiology and management [J]. Intensive Care Med, 2021, 47(8): 835-850.
[2]
Selby NM, Taal MW. Long-term outcomes after AKI—a major unmet clinical need [J]. Kidney Int, 2019, 95(1): 21-23.
[3]
Wang Z, Zhang C. From AKI to CKD: maladaptive repair and the underlying mechanisms [J]. Int J Mol Sci, 2022, 23(18): 10880.
[4]
Qi M, Zheng L, Qi Y, et al. Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70 [J]. Pharmacol Res, 2015, 100: 341-352.
[5]
Chen M, Wen X, Gao Y, et al. IRF-4 deficiency reduces inflammation and kidney fibrosis after folic acid-induced acute kidney injury [J]. Int Immunopharmacol, 2021, 100: 108142.
[6]
Jang HR, Rabb H. Immune cells in experimental acute kidney injury [J]. Nat Rev Nephrol, 2015, 11(2): 88-101.
[7]
Xu J, Li X, Yuan Q, et al. The semaphorin 4A-neuropilin 1 axis alleviates kidney ischemia reperfusion injury by promoting the stability and function of regulatory T cells [J]. Kidney Int, 2021, 100(6): 1268-1281.
[8]
Mehrotra P, Ullah MM, Collett JA, et al. Mutation of RORγt reveals a role for Th17 cells in both injury and recovery from renal ischemia-reperfusion injury [J]. Am J Physiol Renal Physiol, 2020, 319(5): F796-F808.
[9]
Snelson M, de Pasquale C, Ekinci EI, et al. Gut microbiome, prebiotics, intestinal permeability and diabetes complications [J]. Best Pract Res Clin Endocrinol Metab, 2021, 35(3): 101507.
[10]
Li LZ, Tao SB, Ma L, et al. Roles of short-chain fatty acids in kidney diseases [J]. Chin Med J (Engl), 2019, 132(10): 1228-1232.
[11]
钟晨瑜,蔡珂丹. 短链脂肪酸在慢性肾脏病中作用及机制的研究进展[J]. 中国病理生理杂志2021, 37(10): 1900-1904.
[12]
Takagaki Y, Lee SM, Dongqing Z, et al. Endothelial autophagy deficiency induces IL6-dependent endothelial mesenchymal transition and organ fibrosis [J]. Autophagy, 2020, 16(10): 1905-1914.
[13]
Chen J, Li D. Telbivudine attenuates UUO-induced renal fibrosis via TGF-β/Smad and NF-κB signaling [J]. Int Immunopharmacol, 2018, 55: 1-8.
[14]
Humphreys BD. Mechanisms of renal fibrosis [J]. Annu Rev Physiol, 2018, 80: 309-326.
[15]
Liu Y, Lei H, Zhang W, et al. Pyroptosis in renal inflammation and fibrosis: current knowledge and clinical significance [J]. Cell Death Dis, 2023, 14(7): 472.
[16]
Vidya MK, Kumar VG, Sejian V, et al. Toll-like receptors: significance, ligands, signaling pathways, and functions in mammals [J]. Int Rev Immunol, 2018, 37(1): 20-36.
[17]
Li R, Guo Y, Zhang Y, et al. Salidroside ameliorates renal interstitial fibrosis by inhibiting the TLR4/NF-κB and MAPK signaling pathways [J]. Int J Mol Sci, 2019, 20(5): 1103-1119.
[18]
Raphael I, Joern RR, Forsthuber TG. Memory CD4 T cells in immunity and autoimmune diseases [J]. Cells, 2020, 9(3): 531.
[19]
Mehrotra P, Ullah MM, Collett JA, et al. Mutation of RORγt reveals a role for Th17 cells in both injury and recovery from renal ischemia-reperfusion injury [J]. Am J Physiol Renal Physiol, 2020, 319(5): F796-F808.
[20]
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4CD25 regulatory T cells [J]. Nat Immunol, 2003, 4(4): 330-336.
[21]
Dellepiane S, Leventhal JS, Cravedi P. T cells and acute kidney injury: a two-way relationship [J]. Front Immunol, 2020, 11: 1546.
[22]
Bavikar P, Dighe T, Wakhare P, et al. Role of T-lymphocytes in kidney disease [J]. Cureus, 2021, 13(10): e19153.
[23]
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells [J]. Nature, 2013, 504(7480): 446-450.
[24]
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis [J]. Science, 2013, 341(6145): 569-573.
[25]
Johnson MC, Garland AL, Nicolson SC, et al. β-cell-specific IL-2 therapy increases islet Foxp3+Treg and suppresses type 1 diabetes in NOD mice [J]. Diabetes, 2013, 62(11): 3775-3784.
[1] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[2] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[3] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[4] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[5] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[6] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[7] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[8] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[9] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[10] 张英信, 林婷, 张剑文. 构建靶向HLA-A2且表达PD-L1的CAR-Treg细胞及验证其对CD4+T细胞抑制作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 719-728.
[11] 杭丽, 张耀辉, 孙文恺. 参菝抗瘤液对结直肠腺瘤性息肉术后肠道功能、炎症指标及复发情况的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 413-416.
[12] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[13] 李润东, 豆小文, 张秀明. 失笑散联合胃复春治疗慢性萎缩性胃炎的疗效及对血清免疫受体和炎症因子水平的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 470-473.
[14] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[15] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
阅读次数
全文


摘要