切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (04) : 188 -195. doi: 10.3877/cma.j.issn.2095-3216.2025.04.002

论著

肾小管上皮细胞微环境对后肾间充质细胞增殖、迁移与分化的影响
纪鹏程1,2, 国文凯2,3, 毕靖茹2,3, 韩冰4, 傅博2, 谢院生1,2,3,()   
  1. 1100853 北京,解放军医学院
    2100853 北京,解放军总医院第一医学中心肾脏病医学部、肾脏疾病全国重点实验室、国家慢性肾病临床医学研究中心、重症肾脏疾病器械与中西医药物研发北京市重点实验室、数智中医泛血管疾病防治北京市重点实验室、国家中医药管理局高水平中医药重点学科(zyyzdxk-2023310)
    3300071 天津,南开大学医学院
    4300131 天津市人民医院
  • 收稿日期:2025-04-25 出版日期:2025-08-28
  • 通信作者: 谢院生
  • 基金资助:
    国家自然科学基金面上项目(82174115,81774027)

Effects of renal tubular epithelial cell microenvironments on proliferation, migration, and differentiation of metanephric mesenchymal cells

Pengcheng Ji1,2, Wenkai Guo2,3, Jingru Bi2,3, Bing Han4, Bo Fu2, Yuansheng Xie1,2,3,()   

  1. 1Chinese PLA Medical School, Beijing 100853
    2Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing 100853
    3College of Medicine, Nankai University, Tianjin 300071
    4Tianjin People′s Hospital Tianjin 300131; China
  • Received:2025-04-25 Published:2025-08-28
  • Corresponding author: Yuansheng Xie
引用本文:

纪鹏程, 国文凯, 毕靖茹, 韩冰, 傅博, 谢院生. 肾小管上皮细胞微环境对后肾间充质细胞增殖、迁移与分化的影响[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 188-195.

Pengcheng Ji, Wenkai Guo, Jingru Bi, Bing Han, Bo Fu, Yuansheng Xie. Effects of renal tubular epithelial cell microenvironments on proliferation, migration, and differentiation of metanephric mesenchymal cells[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(04): 188-195.

目的

探讨肾小管上皮细胞系TCMK-1细胞正常微环境和损伤微环境对后肾间充质细胞增殖、迁移与分化能力的影响,并探讨相关的信号通路。

方法

采用肾小管上皮细胞系TCMK-1细胞培养,分别制备正常微环境上清液和损伤微环境上清液(5 μg/ml顺铂处理)。采用50 ng/ml碱性成纤维细胞生长因子和10 ng/ml转化生长因子α制备上皮诱导培养基。在增殖实验中,将后肾间充质细胞分为对照组(常规培养基)、正常微环境组和损伤微环境组,应用细胞计数试剂盒-8法检测细胞增殖。在迁移实验中,将后肾间充质细胞分为对照组、顺铂组(常规培养基+5 μg/ml顺铂)、正常微环境组和损伤微环境组,采用Transwell小室法检测细胞迁移能力。在分化实验中,后肾间充质细胞分为对照组、上皮诱导组(上皮诱导培养基)、上皮诱导+正常微环境组和上皮诱导+损伤微环境组,培养10 d后采用Western印迹法检测E-钙粘蛋白、间充质标志物α-平滑肌肌动蛋白和肾小管上皮特异性标志物水通道蛋白2表达。在通路验证实验中,利用Western印迹法检测经典无翅/整合基因(wingless/integrated, Wnt)通路蛋白Wnt3A、β-连环蛋白和T细胞因子4的表达情况,加入经典Wnt通路小分子抑制剂MSAB检测其对上皮分化的影响。

结果

与对照组相比,正常微环境组与损伤微环境组的后肾间充质细胞增殖活性均被抑制(P均<0.01),但两组的迁移能力增加(P均<0.05)。相较对照组和上皮诱导组,正常微环境组和损伤微环境组的后肾间充质细胞E-钙粘蛋白表达均增加,而α-平滑肌肌动蛋白表达减少,损伤微环境组的水通道蛋白2表达也有所增加。损伤微环境组的经典Wnt通路相关蛋白Wnt3A、β-连环蛋白和T细胞因子4表达较多(P均<0.05);加入MSAB能够抑制损伤微环境促进后肾间充质细胞向上皮分化的作用(P<0.05)。

结论

肾小管上皮细胞的正常微环境与损伤微环境均轻度抑制后肾间充质细胞增殖,但可促进其迁移;肾小管上皮细胞的损伤微环境能激活经典Wnt通路,并促进后肾间充质细胞向肾小管上皮细胞分化。

Objective

To investigate the effects of normal and injured microenvironments derived from renal tubular epithelial cell line TCMK-1 cells on the proliferation, migration, and differentiation of metanephric mesenchymal cells (MMCs), and to identify the signaling pathways involved.

Methods

The normal microenvironment supernatant was prepared using the TCMK-1 cells, while the injured microenvironment supernatant was generated by treating TCMK-1 cells with 5 μg/mL cisplatin. The epithelial induction medium was prepared by using 50 ng/ml basic fibroblast growth factor and 10 ng/ml transforming growth factor α. In the proliferation experiment, the MMCs were divided into control group (regular culture medium), normal microenvironment group, and injured microenvironment group. Cell proliferation was detected by the cell counting kit-8 method. In the migration experiment, the MMCs were divided into control group, cisplatin group (regular culture medium+ 5 μg/ml cisplatin), normal microenvironment group, and injured microenvironment group. The cell migration ability was assessed by means of the transwell chamber assay. In the differentiation experiment, the MMCs were divided into control group, epithelial induction group (epithelial induction medium), epithelial induction plus normal microenvironment group, and epithelial induction plus injured microenvironment group. After 10 days of culture, Western blotting was used to detect the protein expression of E-cadherin, mesenchymal marker α-smooth muscle actin, and renal tubular epithelial-specific marker aquaporin 2. In the pathway verification experiment, Western blotting was used to detect the expression levels of canonical wingless/integrated (Wnt) pathway proteins, including Wnt3A, β-catenin, and T-cell factor 4. The small molecule inhibitor MSAB of the canonical Wnt pathway was added to assess its effect on epithelial differentiation.

Results

Compared with the control group, the proliferative activity of MMCs was inhibited in both the normal microenvironment group and the injured microenvironment group (both P<0.05), while the migration ability of the two groups increased (both P<0.01). Compared with the control group and the epithelial induction group, the expression of E-cadherin in the MMCs of both the normal microenvironment group and the injured microenvironment group increased, while the expression of α-smooth muscle actin decreased. Additionally, the expression of aquaporin 2 in the injured microenvironment group also increased. The expression of canonical Wnt pathway-related proteins as Wnt3A, β-catenin, and T-cell factor 4 was higher in the injured microenvironment group (all P<0.05), and the addition of MSAB could inhibit the effect of the injured microenvironment in promoting the epithelial differentiation of MMCs (P<0.05).

Conclusion

Both the normal and injured microenvironments of the renal tubular epithelial cells slightly inhibited the proliferation of the MMCs, but promoted their migration. The injured microenvironment of the renal tubular epithelial cells activated the canonical Wnt pathway and promoted the differentiation of MMCs into renal tubular epithelial cells.

图1 细胞计数试剂盒-8测定正常微环境与损伤微环境后肾间充质细胞增殖活性注:与CON组相比,aP<0.01;与TCMK1-con组相比,bP<0.01
图2 后肾间充质细胞Transwell小室迁移细胞结晶紫染色(×40倍)及比较注:采用10%氯化十六烷基吡啶溶液洗涤Transwell小室迁移细胞的结晶紫染液490 nm波长下检测吸光度;与CON组相比,aP<0.05;与CP组相比,bP<0.05;与TCMK1-con组相比,cP<0.05
图3 Western印迹法检测后肾间充质各组上皮标志物与间充质标志物相关蛋白的表达水平与半定量分析注:E-cadherin:E-钙粘蛋白;α-SMA:α-平滑肌肌动蛋白;AQP2:水通道蛋白2;GAPDH:甘油醛-3-磷酸脱氢酶;与CON组相比,aP<0.05;与EIM组相比,bP<0.05;与EIM+TCMK1-con组相比,cP<0.05
图4 Western印迹法检测各组后肾间充质细胞的经典Wnt通路相关蛋白表达水平与半定量分析注:Wnt3A:wingless/integrated 3A,无翅/整合基因家族蛋白3A;β-catenin:β-连环蛋白;TCF4:T细胞因子4;GAPDH:甘油醛-3-磷酸脱氢酶;与CON组相比,aP<0.05;与EIM组相比,bP<0.05;与EIM+TCMK1-con组相比,cP<0.05
图5 Western印迹法检测后各组肾间充质细胞的上皮标志物、间充质标志物与Wnt经典通路相关蛋白表达水平与半定量分析注:E-cadherin:E-钙粘蛋白;α-SMA:α-平滑肌肌动蛋白;AQP2:水通道蛋白2;Wnt3A:wingless/integrated 3A,无翅/整合基因家族蛋白3A;β-catenin:β-连环蛋白;TCF4:T细胞因子4;GAPDH:甘油醛-3-磷酸脱氢酶;与EIM组相比,aP<0.05;与EIM+TCMK1-cis组相比,bP<0.05
[1]
Maremonti F, Meyer C, Linkermann A. Mechanisms and models of kidney tubular necrosis and nephron loss [J]. J Am Soc Nephrol, 2022, 33(3): 472-86.
[2]
Little MH, Kairath P. Does renal repair recapitulate kidney development?[J]. J Am Soc Nephrol, 2017, 28(1): 34-46.
[3]
张益帆,耿晓东,冀雨薇,等. 富亮氨酸α-2糖蛋白1增强间充质干细胞对急性肾损伤的疗效研究[J/OL]. 中华肾病研究电子杂志2024, 13(1):16-25.
[4]
Wang W, Zhang M, Ren X, et al. Single-cell dissection of cellular and molecular features underlying mesenchymal stem cell therapy in ischemic acute kidney injury [J]. Mol Ther, 2023, 31(10): 3067-3083.
[5]
Ji PC, Xie YS, Guo WK, et al. p38 Signaling mediates naringin-induced osteogenic differentiation of porcine metanephric mesenchymal cells [J]. Chin J Integr Med, 2024, 30(9): 818-825.
[6]
van den Berg CW, Dumas SJ, Little MH, et al. Challenges in maturation and integration of kidney organoids for stem cell-based renal replacement therapy [J]. Kidney Int, 2025, 107(2): 262-270.
[7]
Liu L, Chen D, Yi ZW, et al. Nephroprotective effects of subcapsular transplantation of metanephric mesenchymal cells on gentamicin-induced acute tubular necrosis in rats [J]. World J Pediatr, 2012, 8(2): 156-163.
[8]
Canals J, Navarro A, Vila C, et al. Human embryonic mesenchymal lung-conditioned medium promotes differentiation to myofibroblast and loss of stemness phenotype in lung adenocarcinoma cell lines [J]. J Exp Clin Cancer Res, 2022, 41(1): 37.
[9]
Singaravelu K, Padanilam BJ. In vitro differentiation of MSC into cells with a renal tubular epithelial-like phenotype [J]. Ren Fail, 2009, 31(6): 492-502.
[10]
Wan JX, Zou ZH, You DY, et al. Bone marrow-derived mesenchymal stem cells differentiation into tubular epithelial-like cells in vitro [J]. Cell Biochem Funct, 2012, 30(2): 129-138.
[11]
Chiabotto G, Bruno S, Collino F, et al. Mesenchymal stromal cells epithelial transition induced by renal tubular cells-derived extracellular vesicles [J]. PLoS One, 2016, 11(7): e0159163.
[12]
Liu N, Wang H, Han G, et al. Enhanced proliferation and differentiation of HO-1 gene-modified bone marrow-derived mesenchymal stem cells in the acute injured kidney [J]. Int J Mol Med, 2018, 42(2): 946-956.
[13]
Wen L, Tao SH, Guo F, et al. Selective EZH2 inhibitor zld1039 alleviates inflammation in cisplatin-induced acute kidney injury partially by enhancing RKIP and suppressing NF-κB p65 pathway [J]. Acta Pharmacol Sin, 2022, 43(8): 2067-2080.
[14]
Li ZL, Li XY, Zhou Y, et al. Renal tubular epithelial cells response to injury in acute kidney injury [J]. EBioMedicine, 2024, 107: 105294.
[15]
Polonsky M, Gerhardt LMS, Yun J, et al. Spatial transcriptomics defines injury specific microenvironments and cellular interactions in kidney regeneration and disease [J]. Nat Commun, 2024, 15(1): 7010.
[16]
Gnanasegaran N, Govindasamy V, Musa S, et al. ReNCell VM conditioned medium enhances the induction of dental pulp stem cells into dopaminergic like cells [J]. Cytotechnology, 2016, 68(2): 343-353.
[17]
Zhao Y, Wang C, Hong X, et al. Wnt/β-catenin signaling mediates both heart and kidney injury in type 2 cardiorenal syndrome [J]. Kidney Int, 2019, 95(4): 815-829.
[18]
Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis [J]. Development, 2018, 145(11): dev146589.
[19]
Rim EY, Clevers H, Nusse R. The Wnt pathway: from signaling mechanisms to synthetic modulators [J]. Annu Rev Biochem, 2022, 91: 571-598.
[20]
Collu GM, Hidalgo-Sastre A, Brennan K. Wnt-Notch signalling crosstalk in development and disease [J]. Cell Mol Life Sci, 2014, 71(18): 3553-3567.
[21]
Chong JS, Doorbar J. Modulation of epithelial homeostasis by HPV using Notch and Wnt [J]. Tumour Virus Res, 2024, 18: 200297.
[22]
Li XH, Chen FL, Shen HL. Salidroside promoted osteogenic differentiation of adipose-derived stromal cells through Wnt/β-catenin signaling pathway [J]. J Orthop Surg Res, 2021, 16(1): 456.
[23]
Sturgeon CM, Ditadi A, Awong G, et al. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells [J]. Nat Biotechnol, 2014, 32(6): 554-561.
[24]
Schunk SJ, Floege J, Fliser D, et al. Wnt-β-catenin signalling - a versatile player in kidney injury and repair [J]. Nat Rev Nephrol, 2021, 17(3): 172-184.
[25]
Chen JW, Huang MJ, Chen XN, et al. Transient upregulation of EGR1 signaling enhances kidney repair by activating SOX9+ renal tubular cells [J]. Theranostics, 2022, 12(12): 5434-5450.
[26]
王国勤,包佩玲,芮宏亮,等. Wnt-7a蛋白通过Wnt/β-catenin通路抑制单侧输尿管梗阻小鼠肾脏上皮细胞-间充质细胞转分化[J]. 中国中西医结合肾病杂志2015, 16(7): 579-582, 660.
[1] 赵长燕, 张明慧, 陆春燕. FOXC1和claudin-4在三阴性乳腺癌中的表达及其与肿瘤微环境和炎症相关因子的关系[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 97-102.
[2] 杨纯旭, 张玥, 匡英杰, 刘明. 创面微环境温度对慢性创面愈合影响的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 260-264.
[3] 王馨悦, 王卓然, 古丽莎. 氧化纳米铈促进氧化应激状态下口腔骨缺损修复的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(01): 62-69.
[4] 张大山, 李贺鹏, 蒋福林, 商中华. 代谢功能障碍与免疫微环境关系在肝细胞癌发生发展的作用机制[J/OL]. 中华普通外科学文献(电子版), 2025, 19(02): 124-129.
[5] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[6] 谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.
[7] 刘新锋, 邓煜麟, 刘孝德, 闫道先, 石双胜, 黄德成, 刘悦, 刘学斌, 许朋, 董传江. 肥大细胞免疫球蛋白样受体1在肾透明细胞癌中的表达及临床意义[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 483-491.
[8] 刘咏博, 郭佳. 外泌体在前列腺癌细胞免疫逃逸中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 140-145.
[9] 杨健, 杨璐. 体液外泌体在前列腺癌诊断中的应用前景[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 146-151.
[10] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[11] 陈博滔, 胡宽, 毛先海. 胆囊癌肿瘤微环境与系统治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 203-208.
[12] 姚金平, 郭涛, 张逸辰, 常磊, 冯雨舟, 崔精, 陈建欢, 鲍传庆. 基于免疫微环境分析探讨FN1与DOCK2在结肠癌中的预后价值[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 333-344.
[13] 夏炎, 朱帅帅, 张岩松. 基于生物信息学和机器学习探究前庭神经鞘瘤生物标志物在免疫微环境中的相关功能[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 171-179.
[14] 武世伦, 姚常玉, 许力, 狄治杉, 夏奇, 孙文兵, 孔健. 肿瘤相关巨噬细胞在肝细胞癌血管新生中的作用及研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 388-391.
[15] 宋陈晨, 梁天赐, 赵悦, 张超贻, 王辉, 问婷芝, 戎彪学. X 型胶原α1 在恶性肿瘤中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 221-228.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?