切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (04) : 218 -225. doi: 10.3877/cma.j.issn.2095-3216.2025.04.007

综述

糖尿病肾脏疾病早期发生风险预测模型的研究进展
王柯云, 孙雅佳, 李甜, 张钰哲, 郑颖, 张伟光, 王倩, 董哲毅()   
  1. 100853 北京,解放军总医院第一医学中心肾脏病医学部、肾脏疾病全国重点实验室、国家慢性肾病临床医学研究中心、重症肾脏疾病器械与中西医药物研发北京市重点实验室、数智中医泛血管疾病防治北京市重点实验室、国家中医药管理局高水平中医药重点学科(zyyzdxk-2023310)
  • 收稿日期:2024-12-25 出版日期:2025-08-28
  • 通信作者: 董哲毅
  • 基金资助:
    国家自然科学基金(62450131,42475187); 北京市自然科学基金(7252018,L222133,L232122)

Progress in research on risk prediction models for early occurrence of diabetic kidney disease

Keyun Wang, Yajia Sun, Tian Li, Yuzhe Zhang, Ying Zheng, Weiguang Zhang, Qian Wang, Zheyi Dong()   

  1. Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing 100853, China
  • Received:2024-12-25 Published:2025-08-28
  • Corresponding author: Zheyi Dong
引用本文:

王柯云, 孙雅佳, 李甜, 张钰哲, 郑颖, 张伟光, 王倩, 董哲毅. 糖尿病肾脏疾病早期发生风险预测模型的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 218-225.

Keyun Wang, Yajia Sun, Tian Li, Yuzhe Zhang, Ying Zheng, Weiguang Zhang, Qian Wang, Zheyi Dong. Progress in research on risk prediction models for early occurrence of diabetic kidney disease[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(04): 218-225.

糖尿病肾脏疾病(diabetic kidney disease, DKD)是糖尿病最常见的严重并发症,是全球慢性肾脏病的主要原因和终末期肾脏病的首位原因,给患者、家庭和社会都带来了沉重的疾病负担。建立风险预测模型以早期识别DKD高危人群,并使用个性化的诊疗方案,对降低DKD的发生率和疾病进展具有重要意义。过去几十年,许多学者构建了DKD早期发生风险预测模型。随着大数据和人工智能的发展,通过机器学习和深度学习算法构建预测模型已成为研究热点。本文从DKD早期发生风险模型构建方法层面进行综述,比较了传统预测方法、机器学习和深度学习算法的优劣,并总结了DKD早期发生风险预测模型的研究现状,旨在为DKD的预测模型构建和临床早期干预提供参考。

Diabetic kidney disease (DKD), the most common and severe complication of diabetes, represents a leading global cause of chronic kidney disease (CKD) and the foremost etiology of end-stage renal disease (ESRD). This condition imposes substantial disease burdens on patients, families, and healthcare systems worldwide. The development of risk prediction models to identify high-risk individuals for DKD at an early stage, coupled with personalized diagnostic and therapeutic strategies, holds critical importance for reducing the incidence and progression of DKD. Over the past several decades, numerous scholars have constructed predictive models for early DKD occurrence. With the advancement of big data and artificial intelligence, building predictive models through machine learning and deep learning algorithms has become a research hotspot. This article provided an overview of the methods for constructing risk models for the early occurrence of DKD, compared the advantages and disadvantages of traditional prediction methods, machine learning, and deep learning algorithms, and summarized the current research status of risk prediction models for the early occurrence of DKD, aiming to provide a reference for the construction of prediction models and early clinical intervention of DKD.

图1 糖尿病肾病早期发生风险预测模型构建流程示意图
表1 Logistic回归模型和基于Cox比例风险预测模型比较
表2 机器学习方法构建糖尿病肾病早期发生风险预测模型的比较
表3 长短期记忆模型特点总结
图2 临床模型选择导航图
表4 不同模型在DKD预测中的优缺点比较
模型种类 模型 优点 缺点 适用数据 整体特性
传统的经典统计学模型 Logistic回归 解释性强;计算简单;易于实现假设线性关系 难以处理高维数据;对异常值敏感 低维数据;线性数据 适合低维、线性关系的数据,解释性强但处理复杂数据能力有限
  Cox比例风险模型 处理右删失数据;适用于生存分析;时间依赖性变量处理 比例风险假设;高维数据处理能力有限;对异常值敏感 生存数据;  
机器学习模型 随机森林 处理高维数据;鲁棒性强;自动特征选择 模型解释性较差;计算资源消耗大;可能过拟合 高维数据;非线性数据 适合高维、非线性数据,具有较高的预测性能,但计算资源消耗较大
  支持向量机 处理高维数据;强大的泛化能力;适用于小样本数据 计算复杂度高;参数选择敏感;模型解释性较差 高维数据;小样本数据  
  弹性网络 结合L1和L2正则化,兼具特征选择和多重共线性处理能力;适用于高维数据 参数调优复杂(需调整正则化参数和混合参数);计算复杂度较高;解释性有限 高维数据;线性或近似线性关系数据;多重共线性数据  
  轻量梯度提升机模型 训练速度快;内存占用低;高预测性能 对噪声数据敏感;参数调优复杂 大规模数据;高维数据  
  基于实例的K近邻模型 简单直观;无需训练;适应性强;适用于非线性关系数据 计算复杂度高(需计算样本间距离);对噪声数据敏感;特征选择依赖 低维数据;小规模数据  
深度学习模型 长短期记忆神经网络 解决循环神经网络梯度消失问题;处理长序列数据 计算复杂度高;参数调优复杂;需要大量数据 长序列数据;时间序列数据 适合大规模、高维、非结构化数据,具有强大的表达能力,但需要大量数据和计算资源
图3 临床转化路径图
[1]
Elendu C, John Okah M, Fiemotongha KDJ, et al. Comprehensive advancements in the prevention and treatment of diabetic nephropathy: A narrative review [J]. Medicine (Baltimore), 2023, 102(40): e35397.
[2]
GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of disease study 2021 [J]. Lancet, 2023, 402(10397): 203-234.
[3]
Sun L, Shang J, Xiao J, et al. Development and validation of a predictive model for end-stage renal disease risk in patients with diabetic nephropathy confirmed by renal biopsy [J]. PeerJ, 2020, 8: e8499.
[4]
Thipsawat S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: a review of the literature [J]. Diab Vasc Dis Res, 2021, 18(6): 14791641211058856.
[5]
Xu W, Zhou Y, Jiang Q, et al. Risk prediction models for diabetic nephropathy among type 2 diabetes patients in China: a systematic review and meta-analysis [J]. Front Endocrinol (Lausanne), 2024, 15: 1407348.
[6]
Sheng Y, Cheng J, Zhang C, et al. Establishment and comparison of prediction models for early-stage diabetic kidney disease [J]. Digit Health, 2025, 11: 20552076251355448.
[7]
Zou LX, Wang X, Hou ZL, et al. Machine learning algorithms for diabetic kidney disease risk predictive model of Chinese patients with type 2 diabetes mellitus [J]. Ren Fail, 2025, 47(1): 2486558.
[8]
Lee KA, Kim JS, Kim YJ, et al. A machine learning-based prediction model for diabetic kidney disease in Korean patients with type 2 diabetes mellitus [J]. J Clin Med, 2025, 14(6): 2065.
[9]
Li Y, Jin N, Zhan Q, et al. Machine learning-based risk predictive models for diabetic kidney disease in type 2 diabetes mellitus patients: a systematic review and meta-analysis [J]. Front Endocrinol (Lausanne), 2025, 16: 1495306.
[10]
Dai C, Sun X, Xu J, et al. The accuracy of machine learning in the prediction and diagnosis of diabetic kidney disease: a systematic review and meta-analysis [J]. Int J Med Inform, 2025, 202: 105975.
[11]
Lai C, Hu Z, Zhu J, et al. Development and validation of a deep learning-based automated computed tomography image segmentation and diagnostic model for infectious hydronephrosis: a retrospective multicentre cohort study [J]. EClinicalMedicine, 2025, 82: 103146.
[12]
Pant S, Yang HJ, Cho S, et al. Development of a deep learning model to predict smoking status in patients with chronic obstructive pulmonary disease: a secondary analysis of cross-sectional national survey [J]. Digit Health, 2025, 11: 20552076251333660.
[13]
Tang Y, Wu T, Wang X, et al. Deep learning for the prediction of acute kidney injury after coronary angiography and intervention in patients with chronic kidney disease: a model development and validation study [J]. Ren Fail, 2025, 47(1): 2474206.
[14]
Cheng C, Li B, Li J, et al. Multi-stain deep learning prediction model of treatment response in lupus nephritis based on renal histopathology [J]. Kidney Int, 2025, 107(4): 714-727.
[15]
Hou B, Liu T, Yan P, et al. Deep learning-based prediction model of acute kidney injury following coronary artery bypass grafting in coronary heart disease patients: a multicenter clinical study from China [J]. Front Cardiovasc Med, 2025, 12: 1600012.
[16]
Syed MG, Trucco E, Mookiah MRK, et al. Deep-learning prediction of cardiovascular outcomes from routine retinal images in individuals with type 2 diabetes [J]. Cardiovasc Diabetol, 2025, 24(1): 3.
[17]
Öter A. Deep learning-based LDL-C level prediction and explainable AI interpretation [J]. Comput Biol Med, 2025, 188: 109905.
[18]
Sun L, Wu Y, Hua RX, et al. Prediction models for risk of diabetic kidney disease in Chinese patients with type 2 diabetes mellitus [J]. Ren Fail, 2022, 44(1): 1454-1461.
[19]
Xi C, Wang C, Rong G, et al. A nomogram model that predicts the risk of diabetic nephropathy in type 2 diabetes mellitus patients: a retrospective study [J]. Int J Endocrinol, 2021, 2021: 6672444.
[20]
Yang J, Jiang S. Development and validation of a model that predicts the risk of diabetic nephropathy in type 2 diabetes mellitus patients: a cross-sectional study [J]. Int J Gen Med, 2022, 15: 5089-5101.
[21]
刘畅. 系统性炎症因子在2型糖尿病肾病患者临床评估中的作用及风险预测模型的构建[D]. 杭州:浙江中医药大学,2024.
[22]
韩俊杰,武迪,陈志胜,等. 2型糖尿病患者并发糖尿病肾病风险的列线图预测模型与验证研究[J]. 中国全科医学2024, 27(9): 1054-1061.
[23]
钟倩,钟燕,谢小美,等. 基于血清学相关指标的2型糖尿病肾病发病风险预测模型构建及价值分析[J]. 江西医药2025, 60(5): 441-446.
[24]
Jiang C, Ma X, Chen J, et al. Development of serum lactate level-based nomograms for predicting diabetic kidney disease in type 2 diabetes mellitus patients [J]. Diabetes Metab Syndr Obes, 2024, 17: 1051-1068.
[25]
Zhou DM, Wei J, Zhang TT, et al. Establishment and validation of a nomogram model for prediction of diabetic nephropathy in type 2 diabetic patients with proteinuria [J]. Diabetes Metab Syndr Obes, 2022, 15: 1101-1110.
[26]
刘力嘉,陈晓薇,于业贤,等. 基于区域健康数据平台开发2型糖尿病肾病发病风险预测模型及其应用[J]. 中华流行病学2024, 45(10): 1426-1432.
[27]
Han Y, Hu H, Liu Y, et al. Nomogram model and risk score to predict 5-year risk of progression from prediabetes to diabetes in Chinese adults: development and validation of a novel model [J]. Diabetes Obes Metab, 2023, 25(3): 675-687.
[28]
刘奎,韩政元,李林怿,等. 基于机器学习的糖尿病肾病发病风险预测模型研究[J]. 空军军医大学学报2025, 46(2): 226-231.
[29]
王娴. 2型糖尿病肾病风险预测模型的构建及验证[D]. 承德:承德医学院,2024.
[30]
Cai SS, Zheng TY, Wang KY, et al. Clinical study of different prediction models in predicting diabetic nephropathy in patients with type 2 diabetes mellitus [J]. World J Diabetes, 2024, 15(1): 43-52.
[31]
Zhu Y, Zhang Y, Yang M, et al. Machine learning-based predictive modeling of diabetic nephropathy in type 2 diabetes using integrated biomarkers: a single-center retrospective study [J]. Diabetes Metab Syndr Obes, 2024, 17: 1987-1997.
[32]
Sabanayagam C, He F, Nusinovici S, et al. Prediction of diabetic kidney disease risk using machine learning models: a population-based cohort study of Asian adults [J]. Elife, 2023, 12: e81878.
[33]
Dong Z, Wang Q, Ke Y, et al. Prediction of 3-year risk of diabetic kidney disease using machine learning based on electronic medical records [J]. J Transl Med, 2022, 20(1): 143.
[34]
David SK, Rafiullah M, Siddiqui K. Comparison of different machine learning techniques to predict diabetic kidney disease [J]. J Healthc Eng, 2022, 2022: 7378307.
[35]
Guo A, Beheshti R, Khan YM, et al. Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models [J]. BMC Med Inform Decis Mak, 2021, 21(1): 5.
[36]
Lewis M, Elad G, Beladev M, et al. Comparison of deep learning with traditional models to predict preventable acute care use and spending among heart failure patients [J]. Sci Rep, 2021, 11(1): 1164.
[37]
Zeleznik R, Foldyna B, Eslami P, et al. Deep convolutional neural networks to predict cardiovascular risk from computed tomography [J]. Nat Commun, 2021, 12(1): 715.
[38]
Torres JF, Hadjout D, Sebaa A, et al. Deep learning for time series forecasting: a survey [J]. Big Data, 2021, 9(1): 3-21.
[39]
杜燕华,朱洪挺. 基于BP神经网络算法构建糖尿病早期肾病风险预测模型[J]. 中国医院统计2024, 31(2): 95-101.
[40]
Yun C, Tang F, Gao Z, et al. Construction of risk prediction model of type 2 diabetic kidney disease based on deep learning [J]. Diabetes Metab J, 2024, 48(4): 771-779.
[1] 王昕玥, 袁亚, 束华, 曹琨芃, 叶新华, 李璐. 基于LightGBM 算法构建超声引导下凝血酶治疗假性动脉瘤剂量预测模型[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 153-161.
[2] 房昊宇, 王筱, 张安伟, 尚丹丹, 俞炯, 曹红翠. 基于粪便代谢组学分析间充质干细胞治疗克罗恩病小鼠的有效性生物标志物[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 98-104.
[3] 齐琦, 倪立桐, 王俊逸, 张蔚, 朱熹, 李逸杰, 曹豆豆, 段旭君, 王懿, 张帆, 李世俊. 基于视觉转换器深度学习算法的磁共振弥散张量成像孤独症谱系障碍分类模型研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 44-53.
[4] 沈月秋, 曹梦琳, 许梅杰, 吴敏丹, 吴凯怡, 陆琳娟. 基于可解释机器学习预测慢性阻塞性肺疾病患者急性加重风险研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 380-384.
[5] 许丽妹, 吴海燕, 林海丽, 吉顺妮, 陈春汝, 符娇娇, 陈忠仁, 吴小妹. 机械通气患者呼吸机相关性肺炎的风险分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 447-451.
[6] 赵婷, 易晓芳. 人工智能在子宫腺肌病微创治疗中的应用进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 172-176.
[7] 李媛媛, 李荣山. 机器学习:肾脏疾病研究与诊疗的新前沿[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 181-187.
[8] 张衡, 施歌, 张泽, 高振轩, 杨文强, 王琦, 张黎, 闫晋利. 基于血浆转录组学建立糖尿病周围神经病的生物标志物[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 127-134.
[9] 夏炎, 朱帅帅, 张岩松. 基于生物信息学和机器学习探究前庭神经鞘瘤生物标志物在免疫微环境中的相关功能[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 171-179.
[10] 李娅辉, 栾琳, 黄辉云. 中青年肝癌患者根治术后不同复发时期的风险模型构建及验证[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 112-119.
[11] 唐梦楚, 段俗言, 王宁宁, 毛慧娟, 刘云. 胰高血糖素样肽-1受体激动剂应用于糖尿病肾脏疾病的进展更新[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 307-314.
[12] 陈健, 夏开建, 徐璐, 高福利, 徐晓丹, 王甘红. 基于自动化机器学习建立肝硬化并发急性肾损伤的风险评估模型[J/OL]. 中华临床医师杂志(电子版), 2025, 19(02): 129-139.
[13] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[14] 许一鸣, 范雪源, 李世浩, 徐一帆, 李博文, 耿振洋, 刘亚飞, 叶贯超, 李峰, 黄岚, 齐宇. 人工智能驱动食管癌新辅助精准治疗[J/OL]. 中华胸部外科电子杂志, 2025, 12(02): 96-104.
[15] 李兴研, 郜业发. 乳腺癌保乳术后放疗致急性放射性皮炎风险预测模型构建及验证[J/OL]. 中华卫生应急电子杂志, 2025, 11(03): 165-169.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?