切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (06) : 345 -350. doi: 10.3877/cma.j.issn.2095-3216.2025.06.007

综述

机械通气与急性肾损伤:从机制到临床实践
刘娜(), 盛华, 高超   
  1. 732750 酒泉,63600部队医院肾脏病科
  • 收稿日期:2025-09-29 出版日期:2025-12-28
  • 通信作者: 刘娜
  • 基金资助:
    63600部队医院科研项目(2025YA-18)

Mechanical ventilation and acute kidney injury: from mechanisms to clinical practice

Na Liu(), Hua Sheng, Chao Gao   

  1. Department of Nephrology, Chinese PLA 63600 Troops Hospital, Jiuquan 732750, China, Gansu Province, China
  • Received:2025-09-29 Published:2025-12-28
  • Corresponding author: Na Liu
引用本文:

刘娜, 盛华, 高超. 机械通气与急性肾损伤:从机制到临床实践[J/OL]. 中华肾病研究电子杂志, 2025, 14(06): 345-350.

Na Liu, Hua Sheng, Chao Gao. Mechanical ventilation and acute kidney injury: from mechanisms to clinical practice[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(06): 345-350.

机械通气与急性肾损伤(acute kidney injury,AKI)的发生发展密切相关,其机制涉及血流动力学改变、炎症介质释放、神经体液系统激活及血气紊乱等多因素综合作用。新型生物标志物(如中性粒细胞明胶酶相关脂质运载蛋白、金属蛋白酶组织抑制剂-2和胰岛素样生长因子结合蛋白7)及机器学习模型有助于AKI的早期预警。本文综述了机械通气相关AKI流行病学、病理生理机制、早期预警及防治策略的研究进展,旨在为此类患者的早期识别、精准诊断和规范治疗提供参考。

Mechanical ventilation is closely related to the occurrence and development of acute kidney injury (AKI). Its mechanism involves a comprehensive interaction of multiple factors, such as hemodynamic changes, release of inflammatory mediators, activation of neurohumoral systems, and blood gas disorders. New biomarkers, such as neutrophil gelatinase-associated lipocalin, tissue inhibitor of metalloproteinase-2, and insulin-like growth factor binding protein-7, along with machine learning models, aid in the early warning of AKI. This article reviewed the research progress on the epidemiology, pathophysiological mechanisms, early warning, and prevention and treatment strategies of mechanical ventilation-associated acute kidney injury (AKI), aiming to provide references for early identification, precise diagnosis, and standardized treatment of such patients.

表1 不同患者群体中急性肾损伤的发生率及主要风险因素
表2 机械通气相关急性肾损伤的潜在早期生物标志物
[1]
Chen Y, Feng F, Chang XN, et al. The epidemiology of acute kidney injury in critically ill patients in the Gansu Province: the EACG study [J]. Sci Prog, 2021, 104(2): 368504211018057.
[2]
Benites MH, Suarez-Sipmann F, Kattan E, et al. Ventilation-induced acute kidney injury in acute respiratory failure: do PEEP levels matter? [J]. Crit Care, 2025, 29(1): 130.
[3]
Bouguezzi N, Ben Saida I, Toumi R, et al. Clinical features and outcomes of acute kidney injury in critically ill COVID-19 patients: a retrospective observational study [J]. J Clin Med, 2023, 12(15): 5127.
[4]
Mejia-Vilet JM, Del Toro-Cisneros N, Caballero-Islas AE, et al. Acute kidney injury in critical care COVID-19 patients on invasive mechanical ventilation: the potential preventive role of dexamethasone [J]. Rev Invest Clin, 2022, 75(2): 76-89.
[5]
Wang Z, Ge M, Chen T, et al. Risk factors and long-term outcomes of elderly patients complicating with acute kidney injury after type A acute aortic dissection surgery: a retrospective study [J]. J Thorac Dis, 2020, 12(10): 5833-5841.
[6]
Timilsina A, Dharel D, Chaudhary S, et al. Incidence and outcome of acute kidney injury in hospitalised children [J]. J Nepal Paediatr Soc, 2021, 41(1): 80-86.
[7]
Burgmaier K, Zeiher M, Weber A, et al. Low incidence of acute kidney injury in VLBW infants with restrictive use of mechanical ventilation [J]. Pediatr Nephrol, 2024, 39(4): 1279-1288.
[8]
Huang S, Teng Y, Du J, et al. Internal and external validation of machine learning-assisted prediction models for mechanical ventilation-associated severe acute kidney injury [J]. Aust Crit Care, 2023, 36(4): 604-612.
[9]
Tariq R, Haq AU, Ahmed AR, et al. Prevalence, risk factors and outcomes of acute kidney injury in critically ill children with hematological malignancies [J]. Int J Contemp Pediatr, 2024, 11(7): 887-892.
[10]
Franco Palacios CR, Hoxhaj R, Thigpen C, et al. Factors associated with post-hospitalization dialysis dependence in ECMO patients who required continuous renal replacement therapy [J]. Ren Fail, 2024, 46(1): 2343810.
[11]
Chen D, Cao C, Jiang L, et al. Serum cystatin C: a potential predictor for hospital-acquired acute kidney injury in patients with acute exacerbation of COPD [J]. Chron Respir Dis, 2020, 17: 1479973120940677.
[12]
Doher MP, Torres de Carvalho FR, Scherer PF, et al. Acute kidney injury and renal replacement therapy in critically ill COVID-19 patients: risk factors and outcomes: a single-center experience in Brazil [J]. Blood Purif, 2021, 50(4-5): 520-530.
[13]
Raina R, Sethi S, Aitharaju V, et al. Epidemiology data on the cost and outcomes associated with pediatric acute kidney injury [J]. Pediatr Res, 2023, 94(4): 1385-1391.
[14]
Sharif S, Chen B, Brewster P, et al. Rationale and design of assessing the effectiveness of short-term low-dose lithium therapy in averting cardiac surgery-associated acute kidney injury: a randomized, double blinded, placebo-controlled pilot trial [J]. Front Med (Lausanne), 2021, 8: 639402.
[15]
Tangchitthavorngul S, Lumlertgul N, Peerapornratana S, et al. Epidemiology and long-term outcomes of critically ill patients with severe AKI in India and Southeast Asia [J]. Intensive Care Med, 2025, 51(7): 1306-1319.
[16]
Ottolina D, Zazzeron L, Trevisi L, et al. Acute kidney injury (AKI) in patients with Covid-19 infection is associated with ventilatory management with elevated positive end-expiratory pressure (PEEP) [J]. J Nephrol, 2022, 35(1): 99-111.
[17]
Silva PL, Ball L, Rocco PRM, et al. Physiological and pathophysiological consequences of mechanical ventilation [J]. Semin Respir Crit Care Med, 2022, 43(3): 321-334.
[18]
Bani Hani A, Abu Abeeleh M, Al-Najjar S, et al. Incidence, risk factors and outcomes of acute kidney injury in surgical intensive care unit octogenarians at the Jordan University Hospital [J]. BMC Geriatr, 2023, 23(1): 266.
[19]
Nlandu Y, Makulo JR, Essig M, et al. Factors associated with acute kidney injury (AKI) and mortality in COVID-19 patients in a Sub-Saharan African intensive care unit: a single-center prospective study [J]. Ren Fail, 2023, 45(2): 2263583.
[20]
Panwar R, McNicholas B, Teixeira JP, et al. Renal perfusion pressure: role and implications in critical illness [J]. Ann Intensive Care, 2025, 15(1): 115.
[21]
Rihl MF, Pellegrini JAS, Boniatti MM. VExUS score in the management of patients with acute kidney injury in the intensive care unit: AKIVEX study [J]. J Ultrasound Med, 2023, 42(11): 2547-2556.
[22]
Ko GJ, Rabb H, Hassoun HT. Kidney-lung crosstalk in the critically ill patient [J]. Blood Purif, 2009, 28(2): 75-83.
[23]
冯超男,张钰. 使用机器学习分析脓毒症合并急性呼吸窘迫综合征患者发生急性肾损伤的影响因素及构建预测模型[J]. 国际麻醉学与复苏杂志2024, 45(12): 1256-1262.
[24]
Fogagnolo A, Grasso S, Morelli E, et al. Impact of positive end-expiratory pressure on renal resistive index in mechanical ventilated patients [J]. J Clin Monit Comput, 2024, 38(5): 1145-1153.
[25]
Seubert ME, Goeijenbier M. Controlled mechanical ventilation in critically ill patients and the potential role of venous bagging in acute kidney injury[J]. J Clin Med, 2024, 13(5): 1504.
[26]
Tojo K, Mihara T, Goto T. Effects of intraoperative tidal volume on incidence of acute kidney injury after cardiovascular surgery: a retrospective cohort study [J]. J Crit Care, 2020, 56: 152-156.
[27]
Kuiper JW, Groeneveld AB, Slutsky AS, et al. Mechanical ventilation and acute renal failure [J]. Crit Care Med, 2005, 33(6): 1408-1415.
[28]
Franzen S, DiBona G, Frithiof R. Anesthesia and the renal sympathetic nervous system in perioperative AKI [J]. Semin Nephrol, 2022, 42(3): 151283.
[29]
Cui X, Huang X, Yu X, et al. Clinical characteristics of new-onset acute kidney injury in patients with established acute respiratory distress syndrome: a prospective single-center post hoc observational study [J]. Front Med (Lausanne), 2022, 9: 987437.
[30]
Antonucci E, Garcia B, Chen D, et al. Incidence of acute kidney injury and attributive mortality in acute respiratory distress syndrome randomized trials [J]. Intensive Care Med, 2024, 50(8): 1240-1250.
[31]
Mimura I, Nangaku M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease [J]. Nat Rev Nephrol, 2010, 6(11): 667-678.
[32]
Kellum JA. Determinants of blood pH in health and disease [J]. Crit Care, 2000, 4(1): 6-14.
[33]
Yousef Almulhim M. The efficacy of novel biomarkers for the early detection and management of acute kidney injury: a systematic review [J]. PLoS One, 2025, 20(1): e0311755.
[34]
Husain-Syed F, Reis T, Kashani K, et al. Advances in laboratory detection of acute kidney injury [J]. Pract Lab Med, 2022, 31: e00283.
[35]
何许巍,刘洋,程庆砾,等. 急性肾损伤早期生物标志物即时检测的研究进展[J/OL]. 中华肾病研究电子杂志2025, 14(1): 48-52.
[36]
Tomar A, Kumar V, Saha A. Peritoneal dialysis in children with sepsis-associated AKI (SA-AKI): an experience in a low- to middle-income country [J]. Paediatr Int Child Health, 2021, 41(2): 137-144.
[37]
Singh R, Maclean W, Singh T, et al. A prospective diagnostic study investigating urinary biomarkers of AKI in major abdominal surgery (the AKI-biomas study) [J]. Crit Care, 2025, 29(1): 260.
[38]
Vandenberghe W, Van Laethem L, Herck I, et al. Prediction of cardiac surgery associated - acute kidney injury (CSA-AKI) by healthcare professionals and urine cell cycle arrest AKI biomarkers [TIMP-2]*[IGFBP7]: a single center prospective study (the PREDICTAKI trial) [J]. J Crit Care, 2022, 67: 108-117.
[39]
Tao X, Chen C, Luo W, et al. Combining renal cell arrest and damage biomarkers to predict progressive AKI in patient with sepsis [J]. BMC Nephrol, 2021, 22(1): 415.
[40]
Wilson M, Packington R, Sewell H, et al. Biomarkers during recovery from AKI and prediction of long-term reductions in estimated GFR [J]. Am J Kidney Dis, 2022, 79(5): 646-656. e1.
[41]
Gardner DS, Allen JC, Goodson D, et al. Urinary trace elements are biomarkers for early detection of acute kidney injury [J]. Kidney Int Rep, 2022, 7(7): 1524-1538.
[42]
Shen H, Na W, Li Y, et al. The clinical significance of renal resistance index (RRI) and renal oxygen saturation (RrSO2) in critically ill children with AKI: a prospective cohort study [J]. BMC Pediatr, 2023, 23(1): 224.
[43]
Lee TH, Chen JJ, Cheng CT, et al. Does artificial intelligence make clinical decision better? A review of artificial intelligence and machine learning in acute kidney injury prediction [J]. Healthcare (Basel), 2021, 9(12): 1662.
[44]
Smallwood CD. Monitoring big data during mechanical ventilation in the ICU [J]. Respir Care, 2020, 65(6): 894-910.
[45]
Huang S, Teng Y, Du J, et al. Internal and external validation of machine learning-assisted prediction models for mechanical ventilation-associated severe acute kidney injury [J]. Aust Crit Care, 2023, 36(4): 604-612.
[46]
Dong J, Feng T, Thapa-Chhetry B, et al. Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care [J]. Crit Care, 2021, 25(1): 288.
[47]
Argalious MY, Mao G, Davison RK, et al. Association of intraoperative tidal volumes and acute kidney injury after noncardiac surgery [J]. Anesth Analg, 2020, 130(4): 925-932.
[48]
Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics [J]. Nat Rev Nephrol, 2014, 10(4): 193-207.
[49]
Ryan L, Heed A, Foster J, et al. Acute kidney injury (AKI) associated with intravenous aciclovir in adults: incidence and risk factors in clinical practice [J]. Int J Infect Dis, 2018, 74: 97-99.
[50]
Tjon J, Teoh CW. Medication-induced nephrotoxicity in children [J]. Current Pediatrics Reports, 2020, 8(3): 122-133.
[51]
阿卜杜休库尔·玉素甫,潘天昳,谢烨卿,等. 早期目标导向肾脏替代治疗在重症肺炎相关急性肾损伤患者中的应用效果[J]. 中华医学杂志2024, 104(44): 4065-4072.
[1] 钱何布, 朱林, 姚月平, 姚峰, 李玉卓, 马家驹, 晏倩, 倪晓艳. 应用机器学习建立脓毒性休克患者住院28天死亡预测模型及验证[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(05): 288-297.
[2] 丁雪薇, 买买提吐逊·吐尔地. 富血小板血浆治疗颞下颌关节骨关节病的机制与临床应用[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(06): 424-428.
[3] 杨雯林, 吴元魁. 影像组学在胰腺神经内分泌瘤诊疗中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 426-432.
[4] 尹晓南, 杨弘鑫, 沈朝勇, 尹源, 张波. 胃肠间质瘤四线瑞派替尼的耐药机制及治疗进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 414-420.
[5] 胡博文, 胡亚兰, 梁辉. 前列腺癌早期筛查的常见方法及最新研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 800-808.
[6] 程必盛, 吴芃. 2025EAU年会要点:微创、远程与精准泌尿外科的发展趋势[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 693-699.
[7] 李瑞芳, 王明帅, 邢念增. 循环肿瘤细胞在膀胱癌诊断和预后中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 705-713.
[8] 周福安, 陈戬. 经皮肾镜碎石取石术后肾功能恶化的围术期影响因素研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 792-795.
[9] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[10] 唐善华, 赖展鸿, 刘海晴, 王小振, 王恺, 周杰. 基于XGBoost算法构建肝癌肝切除术后肝衰竭早期识别预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 725-731.
[11] 荣锦, 骆明星, 王禹, 刘婷婷, 张宏斌. 全膝关节置换术后慢性疼痛影响因素的多种模型预测性能比较[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(06): 337-344.
[12] 甘惠, 伍姿, 石迎春, 刘余, 杨政伟. 生物标志物用于老年髋部骨折患者谵妄风险预测的研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(06): 379-384.
[13] 宁雯琪, 张永利. 脓毒症心肌病的研究进展:基础、临床与展望[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 461-466.
[14] 侯雨函, 姜福金, 王苏贵. 膀胱癌免疫治疗的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 471-475.
[15] 慕佳霖, 孙萌, 李育霖, 邹卉. 甲基丙二酸血症合并肾脏并发症的发生机制和治疗研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 382-387.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?