切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2015, Vol. 04 ›› Issue (01) : 43 -48. doi: 10.3877/cma.j.issn.2095-3216.2015.01.009

所属专题: 文献

综述

腹膜透析滤出液生物标志物的研究进展
曹雪莹1, 周建辉1, 蔡广研1, 陈香美1,()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 出版日期:2015-02-28
  • 通信作者: 陈香美
  • 基金资助:
    "十二五"国家科技支撑计划课题"腹膜透析医用材料及配套设备研发"(2014BAI11B16); 解放军总医院四百工程基金"腹膜透析救治高出血风险的肾衰竭"(MJ201407)

Progress of research on biomarkers in peritoneal dialysis effluent

Xueying Cao1, Jianhui Zhou1, Guangyan Cai1, Xiangmei Chen1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Published:2015-02-28
  • Corresponding author: Xiangmei Chen
  • About author:
    Corresponding author: Chen Xiangmei, Email:
引用本文:

曹雪莹, 周建辉, 蔡广研, 陈香美. 腹膜透析滤出液生物标志物的研究进展[J]. 中华肾病研究电子杂志, 2015, 04(01): 43-48.

Xueying Cao, Jianhui Zhou, Guangyan Cai, Xiangmei Chen. Progress of research on biomarkers in peritoneal dialysis effluent[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2015, 04(01): 43-48.

长期腹膜透析可导致腹膜形态和功能的改变。腹膜功能评估主要通过小分子溶质和液体清除两方面来评估,相对简单。但形态学上的评估则要依靠腹膜活检,在临床应用中很难施行。如何能准确、方便、无创地评价腹膜的变化,一直备受关注。腹膜组织长期浸泡在腹膜透析液中,必然会分泌或脱落一些物质,是腹膜透析患者独特且方便的检测标本,因此通过回收腹膜透析滤出液,寻找并测定这些物质,将有助于了解腹膜的病理生理变化。因此,本文针对腹膜透析研究中新兴的候选生物标志物进行了汇总,并就其临床应用前景做一综述。

Long-term peritoneal dialysis can lead to alterations in the function and morphology of peritoneal membrane. Peritoneal function evaluation mainly consists of clearance of both small molecule solute and liquid, being relatively simple. But morphology assessment relies on the peritoneal biopsy that is difficult to be clinically applied. How to evaluate peritoneal changes through accurate, convenient, and noninvasive ways has long been a focus. As the peritoneal tissue is immersed in the peritoneal fluid continuously, some substances may inevitably detached or be secreted, which are the unique and convenient specimens for detection in peritoneal dialysis patients. It will help to understand the peritoneal pathophysiological changes to collect peritoneal dialysis effluent in order to find and determine the potential substances. Therefore, this present paper has reviewed the candidate biomarkers emerging from peritoneal dialysis study as well as their prospect in clinical application..

表1 腹膜透析滤出液候选生物标志物
[1]
Coester AM, Smit W, Struijk DG, et al. Peritoneal function in clinical practice: the importance of follow-up and its measurement in patients. Recommendations for patient information and measurement of peritoneal function [J]. NDT plus, 2009, 2(2): 104-110.
[2]
Krediet RT, Struijk DG. Peritoneal dialysis membrane evaluation in clinical practice [J]. Contrib Nephrol, 2012, 178: 232-237.
[3]
Sampimon DE, Coester AM, Struijk DG, et al. The time course of peritoneal transport parameters in peritoneal dialysis patients who develop encapsulating peritoneal sclerosis [J]. Nephrol Dial Transplant, 2011, 26(1): 291-298.
[4]
Mateijsen MA, van der Wal AC, Hendriks PM, et al. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis [J]. Perit Dial Int, 1999, 19(6): 517-525.
[5]
Zweers MM, Splint LJ, Krediet RT, et al. Ultrastructure of basement membranes of peritoneal capillaries in a chronic peritoneal infusion model in the rat [J]. Nephrol Dial Transplant, 2001, 16(3): 651-654.
[6]
Williams JD, Craig KJ, Topley N, et al. Morphologic changes in the peritoneal membrane of patients with renal disease[J]. J Am Soc Nephrol, 2002, 13(2): 470-479.
[7]
Combet S, Miyata T, Moulin P, et al. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis [J]. J Am Soc Nephrol, 2000, 11(4): 717-728.
[8]
Cuccurullo M, Evangelista C, Vilasi A, et al. Proteomic analysis of peritoneal fluid of patients treated by peritoneal dialysis: effect of glucose concentration [J]. Nephrol Dial Transplant, 2011, 26(6): 1990-1999.
[9]
Raaijmakers R, Pluk W, Schroder CH, et al. Proteomic profiling and identification in peritoneal fluid of children treated by peritoneal dialysis [J]. Nephrol Dial Transplant, 2008, 23(7): 2402-2405.
[10]
Lin WT, Tsai CC, Chen CY, et al. Proteomic analysis of peritoneal dialysate fluid in patients with dialysis-related peritonitis [J]. Renal failure, 2008, 30(8): 772-777.
[11]
Wang HY, Tian YF, Chien CC, et al. Differential proteomic characterization between normal peritoneal fluid and diabetic peritoneal dialysate [J]. Nephrol Dial Transplant, 2010, 25(6): 1955-1963.
[12]
Sritippayawan S, Chiangjong W, Semangoen T, et al. Proteomic analysis of peritoneal dialysate fluid in patients with different types of peritoneal membranes [J]. J Proteome Res, 2007, 6(11): 4356-4362.
[13]
Sakurada T, Kojima S, Oishi D, et al. Prothrombin fragment 1 + 2 (F1 + 2) in effluent is a useful marker for peritoneal permeability in peritoneal dialysis patients using neutral dialysate [J]. Adv Perit Dial, 2011, 27: 2-5.
[14]
Goedde M, Sitter T, Schiffl H, et al. Coagulation- and fibrinolysis-related antigens in plasma and dialysate of CAPD patients [J]. Perit Dial Int, 1997, 17(2): 162-166.
[15]
de Boer AW, Levi M, Reddingius RE, et al. Intraperitoneal hypercoagulation and hypofibrinolysis is present in childhood peritonitis [J]. Pediatr Nephrol, 1999, 13(4): 284-287.
[16]
Lopes BD, Coester AM, Noordzij M, et al. Variability of effluent cancer antigen 125 and interleukin-6 determination in peritoneal dialysis patients [J]. Nephrol Dial Transplant, 2011, 26(11): 3739-3744.
[17]
Pecoits-Filho R, Araujo MR, Lindholm B, et al. Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate [J]. Nephrol Dial Transplant, 2002, 17(8):1480-1486.
[18]
Rodrigues AS, Almeida M, Fonseca I, et al. Peritoneal fast transport in incident peritoneal dialysis patients is not consistently associated with systemic inflammation [J]. Nephrol Dial Transplant, 2006, 21(3): 763-769.
[19]
van Esch S, Zweers MM, Jansen MA, et al. Determinants of peritoneal solute transport rates in newly started nondiabetic peritoneal dialysis patients [J]. Perit Dial Int, 2004, 24(6): 554-561.
[20]
Williams JD, Topley N, Craig KJ, et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane [J]. Kidney Int, 2004, 66(1): 408-418.
[21]
Mizutani M, Ito Y, Mizuno M, et al. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate [J]. Am J Physiol Renal Physiol, 2010, 298(3): F721-F733.
[22]
Margetts PJ, Kolb M, Galt T, et al. Gene transfer of transforming growth factor-beta1 to the rat peritoneum: effects on membrane function [J]. J Am Soc Nephrol, 2001, 12(10): 2029-2039.
[23]
Jones S, Holmes CJ, Krediet RT, et al. Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels [J]. Kidney Int, 2001, 59(4): 1529-1538.
[24]
Sampimon DE, Korte MR, Barreto DL, et al. Early diagnostic markers for encapsulating peritoneal sclerosis: a case-control study [J]. Perit Dial Int, 2010, 30(2): 163-169.
[25]
Ahmad S, North BV, Qureshi A, et al. CCL18 in peritoneal dialysis patients and encapsulating peritoneal sclerosis [J]. Eur J Clin Invest, 2010, 40(12): 1067-1073.
[26]
Szeto CC, Wong TY, Lai KB, et al. Dialysate hyaluronan concentration predicts survival but not peritoneal sclerosis in continuous ambulatory peritoneal dialysis [J]. Am J Kidney Dis, 2000, 36(3): 609-614.
[27]
Hirahara I, Inoue M, Umino T, et al. Matrix metalloproteinase levels in the drained dialysate reflect the peritoneal solute transport rate: a multicentre study in Japan [J]. Nephrol Dial Transplant, 2011, 26(5): 1695-1701.
[28]
Barreto DL, Coester AM, Struijk DG, et al. Can effluent matrix metalloproteinase 2 and plasminogen activator inhibitor 1 be used as biomarkers of peritoneal membrane alterations in peritoneal dialysis patients [J] ? Perit Dial Int, 2013, 33(5): 529-537.
[29]
Rippe B, Simonsen O, Heimburger O, et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products [J]. Kidney Int, 2001, 59(1): 348-357.
[30]
le PCY, Welten AG, Weijmer MC, et al. Initiating CAPD with a regimen low in glucose and glucose degradation products, with icodextrin and amino acids (NEPP) is safe and efficacious [J]. Perit Dial Int, 2005, 25(Suppl 3): S64-S68.
[31]
Ho-dac-Pannekeet MM, Hiralall JK, Struijk DG, et al. Longitudinal follow-up of CA125 in peritoneal effluent [J]. Kidney Int, 1997, 51(3): 888-893.
[32]
Lopes Barreto D, Coester AM, Noordzij M, et al. Variability of effluent cancer antigen 125 and interleukin-6 determination in peritoneal dialysis patients [J]. Nephrol Dial Transplant, 2011, 26(11): 3739-3744.
[33]
Szeto CC, Chow KM, Lam CW, et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products--a 1-year randomized control trial [J]. Nephrol Dial Transplant, 2007, 22(2): 552-559.
[34]
Haas S, Schmitt CP, Arbeiter K, et al. Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis [J]. J Am Soc Nephrol, 2003, 14(10): 2632-2638.
[35]
Pecoits-Filho R, Carvalho MJ, Stenvinkel P, et al. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis[J]. Perit Dial Int, 2006, 26(1): 53-63.
[36]
Pecoits-Filho R, Barany P, Lindholm B, et al. Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment [J]. Nephrol Dial Transplant, 2002, 17(9): 1684-1688.
[37]
Zemel D, ten BRJ, Struijk DG, et al. Interleukin-6 in CAPD patients without peritonitis: relationship to the intrinsic permeability of the peritoneal membrane [J]. Clin Nephrol, 1992, 37(2): 97-103.
[38]
Rodrigues AS, Martins M, Korevaar JC, et al. Evaluation of peritoneal transport and membrane status in peritoneal dialysis: focus on incident fast transporters [J]. Am J Nephrol, 2007, 27(1): 84-91.
[39]
Sawai A, Ito Y, Mizuno M, et al. Peritoneal macrophage infiltration is correlated with baseline peritoneal solute transport rate in peritoneal dialysis patients [J]. Nephrol Dial Transplant, 2011, 26(7): 2322-2332.
[40]
Oh KH, Moon JY, Oh J, et al. Baseline peritoneal solute transport rate is not associated with markers of systemic inflammation or comorbidity in incident Korean peritoneal dialysis patients [J]. Nephrol Dial Transplant, 2008, 23(7): 2356-2364.
[41]
Johnson DW, Hawley CM, McDonald SP, et al. Superior survival of high transporters treated with automated versus continuous ambulatory peritoneal dialysis [J]. Nephrol Dial Transplant, 2010, 25(6): 1973-1979.
[42]
Gillerot G, Goffin E, Michel C, et al. Genetic and clinical factors influence the baseline permeability of the peritoneal membrane [J]. Kidney Int, 2005, 67(6): 2477-2487.
[43]
Hwang YH, Son MJ, Yang J, et al. Effects of interleukin-6 T15A single nucleotide polymorphism on baseline peritoneal solute transport rate in incident peritoneal dialysis patients [J]. Perit Dial Int, 2009, 29(1): 81-88.
[44]
Lee YT, Tsai YC, Yang YK, et al. Association between interleukin-10 gene polymorphism -592 (A/C) and peritoneal transport in patients undergoing peritoneal dialysis [J]. Nephrology, 2011, 16(7): 663-671.
[45]
Zemel D, Imholz AL, de Waart DR, et al. Appearance of tumor necrosis factor-alpha and soluble TNF-receptors I and II in peritoneal effluent of CAPD [J]. Kidney Int, 1994, 46(5): 1422-1430.
[46]
Zweers MM, de Waart DR, Smit W, et al. Growth factors VEGF and TGF-beta1 in peritoneal dialysis [J]. J Lab Clin Med, 1999, 134(2): 124-132.
[47]
Dvorak HF, Brown LF, Detmar M, et al. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis [J]. Am J Pathol, 1995, 146(5): 1029-1039.
[48]
Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders [J]. N Engl J Med, 1994, 331(22): 1480-1487.
[49]
Shimo T, Nakanishi T, Nishida T, et al. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo [J]. J Biochem, 1999, 126(1): 137-145.
[50]
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 [J]. Nat Cell Biol, 2008, 10(5): 593-601.
[51]
Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2 [J]. J Biol Chem, 2008, 283(22): 14910-14914.
[52]
Chen J, Kam-Tao P, Kwan BC, et al. Relation between microRNA expression in peritoneal dialysis effluent and peritoneal transport characteristics [J]. Dis Markers, 2012, 33(1):35-42.
[53]
Sitter T, Spannagl M, Schiffl H, et al. Imbalance between intraperitoneal coagulation and fibrinolysis during peritonitis of CAPD patients: the role of mesothelial cells [J]. Nephrol Dial Transplant, 1995, 10(5): 677-683.
[54]
Dobbie JW, Lloyd JK, Gall CA. Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients [J]. Adv Perit Dial, 1990, 6:3-12.
[55]
Lai KN, Szeto CC, Lai KB, et al. Increased production of hyaluronan by peritoneal cells and its significance in patients on CAPD [J]. Am J Kidney Dis, 1999, 33(2): 318-324.
[56]
Ho-dac-Pannekeet MM, Hiralall JK, Struijk DG, et al. Markers of peritoneal mesothelial cells during treatment with peritoneal dialysis [J]. Adv Perit Dial, 1997, 13: 17-22.
[57]
Graff J, Joffe P, Fugleberg S, et al. Collagen markers in peritoneal dialysis patients [J]. Adv Perit Dial, 1995, 11: 24-27.
[58]
Digenis GE, Dombros NV, Balaskas EV, et al. Procollagen-I and collagen-I in the serum and dialysate of CAPD patients: changes over time [J]. Perit Dial Int, 1995, 15(8): 371-374.
[59]
Dawson S, Henney A. The status of PAI-1 as a risk factor for arterial and thrombotic disease: a review[J]. Atherosclerosis, 1992, 95(2-3):105-117.
[60]
Holmdahl L, Falkenberg M, Ivarsson ML, et al. Plasminogen activators and inhibitors in peritoneal tissue [J]. APMIS, 1997, 105(1): 25-30.
[61]
Marshall BC, Santana A, Xu QP, et al. Metalloproteinases and tissue inhibitor of metalloproteinases in mesothelial cells. Cellular differentiation influences expression [J]. J Clin Invest, 1993, 91(4): 1792-1799.
[62]
Margetts PJ, Bonniaud P, Liu L, et al. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum [J]. J Am Soc Nephrol, 2005, 16(2): 425-436.
[63]
Khasigov PZ, Podobed OV, Ktzoeva SA, et al. Matrix metalloproteinases of normal human tissues [J]. Biochemistry, 2001, 66(2): 130-140.
[64]
Hirahara I, Inoue M, Okuda K, et al. The potential of matrix metalloproteinase-2 as a marker of peritoneal injury, increased solute transport, or progression to encapsulating peritoneal sclerosis during peritoneal dialysis--a multicentre study in Japan [J]. Nephrol Dial Transplant, 2007, 22(2): 560-567.
[65]
Hirata H, Miyamoto H, Shimokawa K, et al. Novel diagnostic method of peritoneal injury using dual macromolecular markers [J]. Biol Pharm Bull, 2014, 37(2): 262-267.
[1] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[4] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[5] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[6] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[7] 杜静怡, 徐兴祥. 循环肿瘤细胞在非小细胞肺癌中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 596-600.
[8] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[9] 侍新宇, 孙金兵, 何宋兵. 血液生物标志物在直肠癌新辅助治疗中的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(03): 228-233.
[10] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[11] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[12] 蔡荇, 张文娟, 於江泉, 郑瑞强. 血浆肝素结合蛋白在脓毒症早期诊断和预后预测中的应用[J]. 中华重症医学电子杂志, 2023, 09(02): 168-177.
[13] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[14] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
[15] 郭芳芳, 李珉珉. 狼疮肾炎无创生物标志物的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 271-275.
阅读次数
全文


摘要