[1] |
Coester AM, Smit W, Struijk DG, et al. Peritoneal function in clinical practice: the importance of follow-up and its measurement in patients. Recommendations for patient information and measurement of peritoneal function [J]. NDT plus, 2009, 2(2): 104-110.
|
[2] |
Krediet RT, Struijk DG. Peritoneal dialysis membrane evaluation in clinical practice [J]. Contrib Nephrol, 2012, 178: 232-237.
|
[3] |
Sampimon DE, Coester AM, Struijk DG, et al. The time course of peritoneal transport parameters in peritoneal dialysis patients who develop encapsulating peritoneal sclerosis [J]. Nephrol Dial Transplant, 2011, 26(1): 291-298.
|
[4] |
Mateijsen MA, van der Wal AC, Hendriks PM, et al. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis [J]. Perit Dial Int, 1999, 19(6): 517-525.
|
[5] |
Zweers MM, Splint LJ, Krediet RT, et al. Ultrastructure of basement membranes of peritoneal capillaries in a chronic peritoneal infusion model in the rat [J]. Nephrol Dial Transplant, 2001, 16(3): 651-654.
|
[6] |
Williams JD, Craig KJ, Topley N, et al. Morphologic changes in the peritoneal membrane of patients with renal disease[J]. J Am Soc Nephrol, 2002, 13(2): 470-479.
|
[7] |
Combet S, Miyata T, Moulin P, et al. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis [J]. J Am Soc Nephrol, 2000, 11(4): 717-728.
|
[8] |
Cuccurullo M, Evangelista C, Vilasi A, et al. Proteomic analysis of peritoneal fluid of patients treated by peritoneal dialysis: effect of glucose concentration [J]. Nephrol Dial Transplant, 2011, 26(6): 1990-1999.
|
[9] |
Raaijmakers R, Pluk W, Schroder CH, et al. Proteomic profiling and identification in peritoneal fluid of children treated by peritoneal dialysis [J]. Nephrol Dial Transplant, 2008, 23(7): 2402-2405.
|
[10] |
Lin WT, Tsai CC, Chen CY, et al. Proteomic analysis of peritoneal dialysate fluid in patients with dialysis-related peritonitis [J]. Renal failure, 2008, 30(8): 772-777.
|
[11] |
Wang HY, Tian YF, Chien CC, et al. Differential proteomic characterization between normal peritoneal fluid and diabetic peritoneal dialysate [J]. Nephrol Dial Transplant, 2010, 25(6): 1955-1963.
|
[12] |
Sritippayawan S, Chiangjong W, Semangoen T, et al. Proteomic analysis of peritoneal dialysate fluid in patients with different types of peritoneal membranes [J]. J Proteome Res, 2007, 6(11): 4356-4362.
|
[13] |
Sakurada T, Kojima S, Oishi D, et al. Prothrombin fragment 1 + 2 (F1 + 2) in effluent is a useful marker for peritoneal permeability in peritoneal dialysis patients using neutral dialysate [J]. Adv Perit Dial, 2011, 27: 2-5.
|
[14] |
Goedde M, Sitter T, Schiffl H, et al. Coagulation- and fibrinolysis-related antigens in plasma and dialysate of CAPD patients [J]. Perit Dial Int, 1997, 17(2): 162-166.
|
[15] |
de Boer AW, Levi M, Reddingius RE, et al. Intraperitoneal hypercoagulation and hypofibrinolysis is present in childhood peritonitis [J]. Pediatr Nephrol, 1999, 13(4): 284-287.
|
[16] |
Lopes BD, Coester AM, Noordzij M, et al. Variability of effluent cancer antigen 125 and interleukin-6 determination in peritoneal dialysis patients [J]. Nephrol Dial Transplant, 2011, 26(11): 3739-3744.
|
[17] |
Pecoits-Filho R, Araujo MR, Lindholm B, et al. Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate [J]. Nephrol Dial Transplant, 2002, 17(8):1480-1486.
|
[18] |
Rodrigues AS, Almeida M, Fonseca I, et al. Peritoneal fast transport in incident peritoneal dialysis patients is not consistently associated with systemic inflammation [J]. Nephrol Dial Transplant, 2006, 21(3): 763-769.
|
[19] |
van Esch S, Zweers MM, Jansen MA, et al. Determinants of peritoneal solute transport rates in newly started nondiabetic peritoneal dialysis patients [J]. Perit Dial Int, 2004, 24(6): 554-561.
|
[20] |
Williams JD, Topley N, Craig KJ, et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane [J]. Kidney Int, 2004, 66(1): 408-418.
|
[21] |
Mizutani M, Ito Y, Mizuno M, et al. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate [J]. Am J Physiol Renal Physiol, 2010, 298(3): F721-F733.
|
[22] |
Margetts PJ, Kolb M, Galt T, et al. Gene transfer of transforming growth factor-beta1 to the rat peritoneum: effects on membrane function [J]. J Am Soc Nephrol, 2001, 12(10): 2029-2039.
|
[23] |
Jones S, Holmes CJ, Krediet RT, et al. Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels [J]. Kidney Int, 2001, 59(4): 1529-1538.
|
[24] |
Sampimon DE, Korte MR, Barreto DL, et al. Early diagnostic markers for encapsulating peritoneal sclerosis: a case-control study [J]. Perit Dial Int, 2010, 30(2): 163-169.
|
[25] |
Ahmad S, North BV, Qureshi A, et al. CCL18 in peritoneal dialysis patients and encapsulating peritoneal sclerosis [J]. Eur J Clin Invest, 2010, 40(12): 1067-1073.
|
[26] |
Szeto CC, Wong TY, Lai KB, et al. Dialysate hyaluronan concentration predicts survival but not peritoneal sclerosis in continuous ambulatory peritoneal dialysis [J]. Am J Kidney Dis, 2000, 36(3): 609-614.
|
[27] |
Hirahara I, Inoue M, Umino T, et al. Matrix metalloproteinase levels in the drained dialysate reflect the peritoneal solute transport rate: a multicentre study in Japan [J]. Nephrol Dial Transplant, 2011, 26(5): 1695-1701.
|
[28] |
Barreto DL, Coester AM, Struijk DG, et al. Can effluent matrix metalloproteinase 2 and plasminogen activator inhibitor 1 be used as biomarkers of peritoneal membrane alterations in peritoneal dialysis patients [J] ? Perit Dial Int, 2013, 33(5): 529-537.
|
[29] |
Rippe B, Simonsen O, Heimburger O, et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products [J]. Kidney Int, 2001, 59(1): 348-357.
|
[30] |
le PCY, Welten AG, Weijmer MC, et al. Initiating CAPD with a regimen low in glucose and glucose degradation products, with icodextrin and amino acids (NEPP) is safe and efficacious [J]. Perit Dial Int, 2005, 25(Suppl 3): S64-S68.
|
[31] |
Ho-dac-Pannekeet MM, Hiralall JK, Struijk DG, et al. Longitudinal follow-up of CA125 in peritoneal effluent [J]. Kidney Int, 1997, 51(3): 888-893.
|
[32] |
Lopes Barreto D, Coester AM, Noordzij M, et al. Variability of effluent cancer antigen 125 and interleukin-6 determination in peritoneal dialysis patients [J]. Nephrol Dial Transplant, 2011, 26(11): 3739-3744.
|
[33] |
Szeto CC, Chow KM, Lam CW, et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products--a 1-year randomized control trial [J]. Nephrol Dial Transplant, 2007, 22(2): 552-559.
|
[34] |
Haas S, Schmitt CP, Arbeiter K, et al. Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis [J]. J Am Soc Nephrol, 2003, 14(10): 2632-2638.
|
[35] |
Pecoits-Filho R, Carvalho MJ, Stenvinkel P, et al. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis[J]. Perit Dial Int, 2006, 26(1): 53-63.
|
[36] |
Pecoits-Filho R, Barany P, Lindholm B, et al. Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment [J]. Nephrol Dial Transplant, 2002, 17(9): 1684-1688.
|
[37] |
Zemel D, ten BRJ, Struijk DG, et al. Interleukin-6 in CAPD patients without peritonitis: relationship to the intrinsic permeability of the peritoneal membrane [J]. Clin Nephrol, 1992, 37(2): 97-103.
|
[38] |
Rodrigues AS, Martins M, Korevaar JC, et al. Evaluation of peritoneal transport and membrane status in peritoneal dialysis: focus on incident fast transporters [J]. Am J Nephrol, 2007, 27(1): 84-91.
|
[39] |
Sawai A, Ito Y, Mizuno M, et al. Peritoneal macrophage infiltration is correlated with baseline peritoneal solute transport rate in peritoneal dialysis patients [J]. Nephrol Dial Transplant, 2011, 26(7): 2322-2332.
|
[40] |
Oh KH, Moon JY, Oh J, et al. Baseline peritoneal solute transport rate is not associated with markers of systemic inflammation or comorbidity in incident Korean peritoneal dialysis patients [J]. Nephrol Dial Transplant, 2008, 23(7): 2356-2364.
|
[41] |
Johnson DW, Hawley CM, McDonald SP, et al. Superior survival of high transporters treated with automated versus continuous ambulatory peritoneal dialysis [J]. Nephrol Dial Transplant, 2010, 25(6): 1973-1979.
|
[42] |
Gillerot G, Goffin E, Michel C, et al. Genetic and clinical factors influence the baseline permeability of the peritoneal membrane [J]. Kidney Int, 2005, 67(6): 2477-2487.
|
[43] |
Hwang YH, Son MJ, Yang J, et al. Effects of interleukin-6 T15A single nucleotide polymorphism on baseline peritoneal solute transport rate in incident peritoneal dialysis patients [J]. Perit Dial Int, 2009, 29(1): 81-88.
|
[44] |
Lee YT, Tsai YC, Yang YK, et al. Association between interleukin-10 gene polymorphism -592 (A/C) and peritoneal transport in patients undergoing peritoneal dialysis [J]. Nephrology, 2011, 16(7): 663-671.
|
[45] |
Zemel D, Imholz AL, de Waart DR, et al. Appearance of tumor necrosis factor-alpha and soluble TNF-receptors I and II in peritoneal effluent of CAPD [J]. Kidney Int, 1994, 46(5): 1422-1430.
|
[46] |
Zweers MM, de Waart DR, Smit W, et al. Growth factors VEGF and TGF-beta1 in peritoneal dialysis [J]. J Lab Clin Med, 1999, 134(2): 124-132.
|
[47] |
Dvorak HF, Brown LF, Detmar M, et al. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis [J]. Am J Pathol, 1995, 146(5): 1029-1039.
|
[48] |
Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders [J]. N Engl J Med, 1994, 331(22): 1480-1487.
|
[49] |
Shimo T, Nakanishi T, Nishida T, et al. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo [J]. J Biochem, 1999, 126(1): 137-145.
|
[50] |
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 [J]. Nat Cell Biol, 2008, 10(5): 593-601.
|
[51] |
Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2 [J]. J Biol Chem, 2008, 283(22): 14910-14914.
|
[52] |
Chen J, Kam-Tao P, Kwan BC, et al. Relation between microRNA expression in peritoneal dialysis effluent and peritoneal transport characteristics [J]. Dis Markers, 2012, 33(1):35-42.
|
[53] |
Sitter T, Spannagl M, Schiffl H, et al. Imbalance between intraperitoneal coagulation and fibrinolysis during peritonitis of CAPD patients: the role of mesothelial cells [J]. Nephrol Dial Transplant, 1995, 10(5): 677-683.
|
[54] |
Dobbie JW, Lloyd JK, Gall CA. Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients [J]. Adv Perit Dial, 1990, 6:3-12.
|
[55] |
Lai KN, Szeto CC, Lai KB, et al. Increased production of hyaluronan by peritoneal cells and its significance in patients on CAPD [J]. Am J Kidney Dis, 1999, 33(2): 318-324.
|
[56] |
Ho-dac-Pannekeet MM, Hiralall JK, Struijk DG, et al. Markers of peritoneal mesothelial cells during treatment with peritoneal dialysis [J]. Adv Perit Dial, 1997, 13: 17-22.
|
[57] |
Graff J, Joffe P, Fugleberg S, et al. Collagen markers in peritoneal dialysis patients [J]. Adv Perit Dial, 1995, 11: 24-27.
|
[58] |
Digenis GE, Dombros NV, Balaskas EV, et al. Procollagen-I and collagen-I in the serum and dialysate of CAPD patients: changes over time [J]. Perit Dial Int, 1995, 15(8): 371-374.
|
[59] |
Dawson S, Henney A. The status of PAI-1 as a risk factor for arterial and thrombotic disease: a review[J]. Atherosclerosis, 1992, 95(2-3):105-117.
|
[60] |
Holmdahl L, Falkenberg M, Ivarsson ML, et al. Plasminogen activators and inhibitors in peritoneal tissue [J]. APMIS, 1997, 105(1): 25-30.
|
[61] |
Marshall BC, Santana A, Xu QP, et al. Metalloproteinases and tissue inhibitor of metalloproteinases in mesothelial cells. Cellular differentiation influences expression [J]. J Clin Invest, 1993, 91(4): 1792-1799.
|
[62] |
Margetts PJ, Bonniaud P, Liu L, et al. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum [J]. J Am Soc Nephrol, 2005, 16(2): 425-436.
|
[63] |
Khasigov PZ, Podobed OV, Ktzoeva SA, et al. Matrix metalloproteinases of normal human tissues [J]. Biochemistry, 2001, 66(2): 130-140.
|
[64] |
Hirahara I, Inoue M, Okuda K, et al. The potential of matrix metalloproteinase-2 as a marker of peritoneal injury, increased solute transport, or progression to encapsulating peritoneal sclerosis during peritoneal dialysis--a multicentre study in Japan [J]. Nephrol Dial Transplant, 2007, 22(2): 560-567.
|
[65] |
Hirata H, Miyamoto H, Shimokawa K, et al. Novel diagnostic method of peritoneal injury using dual macromolecular markers [J]. Biol Pharm Bull, 2014, 37(2): 262-267.
|