切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2015, Vol. 04 ›› Issue (01) : 37 -42. doi: 10.3877/cma.j.issn.2095-3216.2015.01.007

所属专题: 文献

论著

血小板反应蛋白-1及其受体CD47在肾间质纤维化血管病变中的表达
夏梦迪1, 谢席胜2,(), 张燕妮2   
  1. 1. 646000 四川省,泸州医学院 2012级肾脏内科研究生;637001 四川省,川北医学院第二临床学院(南充市中心医院)肾内科
    2. 637001 四川省,川北医学院第二临床学院(南充市中心医院)肾内科
  • 出版日期:2015-02-28
  • 通信作者: 谢席胜
  • 基金资助:
    四川省卫生厅资助项目(130463); 中西医结合肾脏病防治四川省青年科技创新研究团队,省科技厅项目(2011JTD0014)

Expression of thrombospondin-1 and its receptor CD47 in vascular lesions of renal interstitial fibrosis

Mengdi Xia1, Xisheng Xie2,(), Yanni Zhang2   

  1. 1. Department of Nephrology, Luzhou Medical College, Luzhou 646000, Sichuan Province, China; Department of Nephrology, Nanchong Central Hospital, Second Clinical Medical Institute of North Sichuan Medical College, Nanchong 637001, Sichuan Province, China
    2. Department of Nephrology, Nanchong Central Hospital, Second Clinical Medical Institute of North Sichuan Medical College, Nanchong 637001, Sichuan Province, China
  • Published:2015-02-28
  • Corresponding author: Xisheng Xie
  • About author:
    Corresponding author: Xie Xisheng, Email:
引用本文:

夏梦迪, 谢席胜, 张燕妮. 血小板反应蛋白-1及其受体CD47在肾间质纤维化血管病变中的表达[J]. 中华肾病研究电子杂志, 2015, 04(01): 37-42.

Mengdi Xia, Xisheng Xie, Yanni Zhang. Expression of thrombospondin-1 and its receptor CD47 in vascular lesions of renal interstitial fibrosis[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2015, 04(01): 37-42.

目的

观察血小板反应蛋白-1(TSP-1)及其受体CD47在单侧输尿管梗阻(UUO)大鼠模型中的表达,探讨TSP-1-CD47在肾周毛细血管(PTC)病变中的作用。

方法

将60只SD大鼠随机分为2组:UUO组45只和假手术组(SOR) 15只。UUO组随机选取15只分别于术后3 d、7 d、14 d处死;SOR组随机选取5只于相同时间点处死。检测24 h尿蛋白定量,采用全自动生化分析仪检测各组大鼠的肾功能,通过Masson染色观察肾间质病理改变;免疫荧光双染色观察TSP-1及其受体CD47在UUO模型中是否存在共表达。Western印迹检测毛细血管病变指标CD34和血管内皮生长因子(VEGF)及TSP-1的表达;多组间均数比较使用方差分析;TSP-1与CD34、VEGF的相关性进行Pearson相关分析。

结果

与SOR组相比,UUO各组大鼠血清肌酐、尿素氮、24 h尿蛋白定量随梗阻时间延长无明显变化,但肾间质纤维化逐渐加重,肾小管损伤评分增加。免疫荧光双染色显示TSP-1及其受体CD47在肾小管间质存在共表达。Western印迹检测显示随UUO时间延长,TSP-1蛋白水平逐渐增加,而CD34及VEGF蛋白表达随梗阻时间延长逐渐下降。相关分析显示TSP-1蛋白水平与CD34及VEGF的表达呈负相关(r=-0.931, P<0.01;r=-0.953, P<0.01)。

结论

TSP-1及其受体CD47在UUO大鼠模型肾间质存在共表达,且与PTC呈负相关。TSP-1可能通过CD47参与UUO肾脏PTC病变的发生发展。

Objective

To observe the expression of TSP-1 and its receptor CD47 in unilateral ureteral obstruction (UUO) rats, and to investigate the role of TSP-1-CD47 in lesions of peritubular capillary (PTC).

Methods

A total of 60 Sprague-Dawley rats were randomly divided into: sham-operation group (SOR) (n=15) and UUO group (n=45). UUO group sacrifice timing consisted of three time points: 3 day, 7 day, 14 day, with 15 animals for each time point. Detection of 24h urinary protein and renal function was made by automatic biochemistry analyzer, and interstitial pathological changes were shown by Masson staining. The expression of TSP-1 and CD47 was measured by immunohistochemical and immunofluorescence double staining. Western blot was used to detect the expression of CD34, VEGF, TSP-1 protein in rat kidneys. The correlations among CD34, VEGF, and TSP-1 protein expression were analyzed with Pearson method.

Results

Compared with the sham-operation group, the levels of serum creatinine (Scr), blood urea nitrogen (BUN), and 24h urinary protein did not change significantly in UUO group, but features of renal tubulointerstitial fibrosis were obvious, and the score of renal interstitial lesion was significantly higher in UUO group. Immunofluorescence double staining showed that TSP-1 and CD47 were coexpressed in UUO renal tubules. Western blot confirmed that TSP-1 protein level was significantly higher in UUO group, while the expressions of CD34 and VEGF protein were decreased. Correlation analysis showed that TSP-1 protein was negatively associated with the expression of CD34 and VEGF(r=-0.931, P<0.01; r=-0.953, P<0.01).

Conclusion

TSP-1 and its receptor CD47 were coexpressed in UUO rats, and negatively associated with PTC. TSP-1 may be involved in the pathological changes of PTC through CD47 in UUO kidneys.

表1 两组大鼠手术后不同时间生化指标变化(±s)
图1 两组大鼠手术后不同时间肾组织病理改变图片(Masson×200)
图2 两组大鼠手术后不同时间肾小管-间质病理评分
图3 两组大鼠手术后不同时间肾脏免疫荧光双染色图片(×400)
表2 CD34、VEGF、TSP-1蛋白在两组大鼠手术后不同时间肾脏中的表达(±s)
图4 CD34、VEGF、TSP-1蛋白在两组大鼠手术后不同时间肾脏中的表达(western印迹)
图5 单侧输尿管阻组大鼠TSP-1的积分光密度灰度值与CD34、VEGF灰度值的相关性
[1]
Sun D, Feng J, Dai C, et al. Role of peritubular capillary loss and hypoxia in progressive tubulointerstitial fibrosis in a rat model of aristolochic acid nephropathy [J]. Am J Nephrol, 2006, 26(4): 363-371.
[2]
Fine LG, Orphanides C, Norman JT. Progressive renal disease: the chronic hypoxia hypothesis [J]. Kidney Int Suppl, 1998, 65:S74-S78.
[3]
Zhang X, Lawler J. Thrombospondin-based antiangiogenic therapy [J]. Microvasc Res, 2007, 74(2-3): 90-99.
[4]
Kaihatsu K, Braasch DA, Cansizoglu A, et al. Enhanced strand invasion by pep tide nucleic acid-peptide conjugates [J]. Biochemistry, 2002, 41(37): 11118-11125.
[5]
Hugo C, Shankland SJ, Pichler RH, et al. Thrombospondin 1 precedes and predicts the development of tubulointerstitial fibrosis in glomerular disease in the rat [J]. Kidney Int, 1998, 53(2): 302-311.
[6]
Kang DH, Joly AH, Oh SW, et al. Impaired angiogenesis in the remnant kidney model. I. Potential role of vascular endothelial growth factor and thrombospondin-1 [J]. J Am Soc Nephrol, 2001, 12(7): 1434-1447.
[7]
Kida Y, Duffield JS. Pivotal role of pericytes in kidney fibrosis [J]. Clin Exp Pharmacol Physiol, 2011, 38(7): 417-423.
[8]
Ohashi R, Shimizu A, Masuda Y,et al. Peritubular capillary regression during the progression of experimental obstructive nephropathy [J]. J Am Soc Nephrol, 2002, 13(7): 1795-1805.
[9]
Sun D, Ma Y, Han H, et al. Thrombospondin-1 short hairpin RNA suppresses tubulointerstitial fibrosis in the kidney of ureteral obstruction by ameliorating peritubular capillary injury [J]. Kidney Blood Press Res, 2012, 35(1): 35-47.
[10]
Dawson DW, Pearce SF, Zhong R,et al. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells [J]. J Cell Biol, 1997, 138(3): 707-717.
[11]
Shim Y, Nam MH, Hyuk SW, et al. Concurrent hypermulticolor monitoring of CD31, CD34, CD45 and CD146 endothelial progenitor cell markers for acute myocardial infarction [J]. Anal Chim Acta, 2015, 853: 501-507.
[12]
Taal MW, Zandi-Nejad K, Weening B, et al. Proinflammatory gene expression and macrophage recruitment in the rat remnant kidney [J]. Kidney Int, 2000, 58(4): 1664-1667.
[13]
Sambrook J, Russell D. Molecular Cloning. A Laboratory Manual[M].New York: Cold Spring Harbor Laboratory Press,2001: 463-470.
[14]
Morrissey J, Klahr S. Transcription factor NF-B regulation of renal fibrosis during ureteral obstruction [J]. Semin Nephrol, 1998, 18(6): 603-611.
[15]
Chen H, Herndon ME, Lawler J. The cell biology of thrombospondin-1 [J]. Matrix Bio, 2000, 19(7): 597-614.
[16]
Guo N, Krutzsch HC, Inman JK, et al. Thrombospondin-1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells [J]. Cancer Res, 1997, 57(9): 1735-1742.
[17]
Iruela-Arispe ML, Bornstein P, Sage H. Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro [J]. Proc Natl Acad Sci USA, 1991, 88(11): 5026-5030.
[18]
Chandrasekaran S, Guo NH, Rodrigues RG, et al. Pro-adhesive and chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by alpha3beta1 integrin and regulated by insulin-like growth factor-1 and CD98 [J]. J Biol Chem, 1999, 274(16): 11408-11416.
[1] 吴警, 吐尔洪江·吐逊. TSP-1/CD47信号轴在肝再生中的作用机制[J]. 中华肝脏外科手术学电子杂志, 2020, 09(06): 613-616.
[2] 梅艳, 朱凤阁, 朱晗玉, 段姝伟, 洪权, 马倩, 蔡广研, 陈香美. STAT3抑制剂S3I-201对实验性肾小管间质纤维化的保护作用[J]. 中华肾病研究电子杂志, 2018, 07(04): 167-171.
[3] 刘国立, 王宁利. 新生血管性青光眼患者房水中血小板反应蛋白-1的表达及其与血管内皮生长因子相关关系的临床研究[J]. 中华眼科医学杂志(电子版), 2018, 08(04): 163-169.
阅读次数
全文


摘要