切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2015, Vol. 04 ›› Issue (01) : 29 -36. doi: 10.3877/cma.j.issn.2095-3216.2015.01.008

所属专题: 文献

论著

上调肾组织intermedin表达抑制单侧输尿管梗阻大鼠肾间质纤维化
乔晞1,(), 赵宁1, 王利华1, 张瑞婧1, 韩伟霞1   
  1. 1. 030001 太原,山西医科大学第二医院肾内科 山西省肾脏病研究所
  • 出版日期:2015-02-28
  • 通信作者: 乔晞
  • 基金资助:
    国家自然科学基金青年科学基金项目(编号:81100531)

Up-regulation of intermedin inhibited renal interstitial fibrosis in the kidney of rats with unilateral ureteral obstruction

Xi Qiao1,(), Ning Zhao1, Lihua Wang1, Ruijing Zhang1, Weixia Han1   

  1. 1. Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, Shanxi 030001, China
  • Published:2015-02-28
  • Corresponding author: Xi Qiao
  • About author:
    Corresponding author: Qiao Xi, Email:
引用本文:

乔晞, 赵宁, 王利华, 张瑞婧, 韩伟霞. 上调肾组织intermedin表达抑制单侧输尿管梗阻大鼠肾间质纤维化[J]. 中华肾病研究电子杂志, 2015, 04(01): 29-36.

Xi Qiao, Ning Zhao, Lihua Wang, Ruijing Zhang, Weixia Han. Up-regulation of intermedin inhibited renal interstitial fibrosis in the kidney of rats with unilateral ureteral obstruction[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2015, 04(01): 29-36.

目的

观察上调肾组织intermedin(IMD)表达对单侧输尿管梗阻(UUO)大鼠肾间质纤维化的影响。

方法

健康雄性Wistar大鼠随机分为假手术组、UUO组、IMD+UUO组、空质粒+UUO组。IMD+UUO组和空质粒+UUO组在输尿管结扎前分别将IMD-pcDNA3.1真核表达质粒和空质粒转入肾组织,real-time RT-PCR及免疫组化法检测转染效率。各组分别于术后7 d、14 d留取梗阻侧肾组织。HE、Masson染色观察肾组织病理变化;real-time RT-PCR检测肾组织中转化生长因子-β1(TGF-β1)、纤连蛋白(Fn1)的mRNA表达;Western印迹法检测Fn1的蛋白表达;免疫组化法检测TGF-β1的蛋白表达。

结果

与假手术组相比,UUO组肾脏出现明显的病理改变,肾间质纤维化程度随梗阻时间延长加重(与假手术组比较,7 d, t=11.927,P=0.0003;14 d, t=8.891,P=0.0009);IMD+UUO组肾脏病理改变及肾间质纤维化程度较同时间点UUO组明显减轻(7 d, t=3.892,P=0.018;14 d, t=4.047,P=0.016),而空质粒+UUO组与UUO组无显著差别(7 d, t=0.562,P=0.604;14 d, t=0.035,P=0.974)。与同时间点假手术组相比,UUO组TGF-β1、Fn1的表达明显升高(TGF-β1 mRNA水平7 d, t=4.432,P=0.011;14 d, t=4.873,P=0.006;蛋白质水平7 d, t=5.312,P=0.006;14 d, t=4.482,P=0.011;Fn1 mRNA水平7 d, t=6.053,P=0.004;14 d, t=7.345,P=0.002;蛋白质水平7 d, t=8.791,P=0.009;14 d t=8.027,P=0.001);转染IMD质粒后Fn1的表达较同时间点UUO组明显下降(mRNA水平7 d, t=3.103,P=0.036;14 d, t=2.913,P=0.044;蛋白质水平7 d, t=2.955,P=0.042;14 d, t=2.991,P=0.040);而转染空质粒后Fn1的表达无明显变化(mRNA水平7 d, t=0.095,P=0.929;14 d, t=0.158,P=0.882;蛋白质水平7 d, t=0.159,P=0.881;14 d, t=0.170,P=0.874)。转染IMD和空质粒对TGF-β1的表达均无明显影响(转染IMD质粒mRNA水平7 d, t=0.176,P=0.869;14 d, t=0.126,P=0.906;蛋白质水平7 d, t=0.198,P=0.853;14 d, t=0.196,P=0.854;转染空质粒mRNA水平7 d, t=0.100,P=0.925;14 d, t=0.097,P=0.928;蛋白质水平7 d, t=0.042,P=0.968; 14 d, t=0.060,P=0.955)。

结论

上调肾组织IMD的表达能明显减轻肾间质纤维化,但其作用不是通过直接抑制TGF-β1的表达实现的。

Objective

To investigate the effects of intermedin (IMD) overexpression on renal interstitial fibrosis in the obstructed kidney of rats with unilateral ureteral obstruction (UUO).

Methods

Male Wistar rats were randomly divided into sham-operated group, UUO group, IMD+ UUO group, and empty plasmid+ UUO group. For IMD+ UUO group or empty plasmid+ UUO group, pcDNA3.1-IMD plasmid or control empty vector was transfected into the left kidney via the renal artery by an ultrasound-microbubble-mediated system before the ureter was obstructed. The transfection rate was detected by real-time RT-PCR and immunohistochemistry. Groups of six animals were killed at 7 d and 14 d after operation. Kidneys were harvested for further analysis. Paraffin-embedded transverse kidney slices were stained with hematoxylin and eosin. For analyzing the degree of tubulointerstitial collagen deposition, sections were stained with Masson trichrome. mRNA expression levels of TGF-β1 and fibronectin (Fn1) were detected by real-time RT-PCR. Protein expression of TGF-β1 was detected by immunohistochemical staining. Protein expression of Fn1 was examined by Western blot analysis.

Results

The ultrasound-microbubble-mediated delivery system yielded high expression of IMD in kidney cells. IMD overexpression remarkably attenuated UUO-induced tubular injury, and blunted fibrotic response as shown by decreased interstitial collagen deposition (7 d, t=3.892, P=0.018 vs UUO group; 14 d, t=4.047, P=0.016 vs UUO group) and downregulation of fibronectin (mRNA 7 d, t=3.103, P=0.036 vs UUO group; 14 d, t=2.913, P=0.044 vs UUO group; Protein 7 d, t=2.955, P=0.042 vs UUO group; 14 d, t=2.991, P=0.040 vs UUO group), whereas TGF-β1 upregulation was not affected (mRNA 7 d, t=0.176, P=0.869 vs UUO group; 14 d, t=0.126, P=0.906 vs UUO; Protein 7 d, t=0.198, P=0.853 vs UUO; 14 d, t=0.196, P=0.854 vs UUO group).

Conclusion

Our results indicated that kidney-specific IMD gene delivery inhibited renal fibrosis induced by UUO. The inhibitory effect of IMD on renal fibrosis was not achieved by directly inhibiting TGF-β1 expression.

表1 Real-time RT-PCR引物序列
图1 各组大鼠肾组织Intermedin mRNA表达
图2 各组大鼠肾组织Intermedin的表达(免疫组化×400)
图3 各组大鼠单侧输尿管梗阻术后不同时间肾组织病理改变(HE染色×400)
图4 各组大鼠单侧输尿管梗阻术后不同时间肾组织病理改变(Masson染色×400)
图5 各组大鼠单侧输尿管梗阻术后不同时间肾组织纤维连接蛋白的表达
图6 各组大鼠单侧输尿管梗阻术后肾组织转化生长因子-β1的表达
[12]
Lian YG, Zhou QG, Zhang YJ, et al. VEGF ameliorates tubulointerstitial fibrosis in unilateral ureteral obstruction mice via inhibition of epithelial-mesenchymal transition [J]. Acta Pharmacol Sin, 2011, 32(12): 1513-1521.
[13]
He W, Wang Y, Zhang MZ, et al. Sirt1 activation protects the mouse renal medulla from oxidative injury [J]. J Clin Invest, 2010, 120(4): 1056-1068.
[14]
Singh DK, Winocour P, Farrington K. Oxidative stress in early diabetic nephropathy: fueling the fire [J]. Nat Rev Endocrinol, 2011, 7(3): 176-184.
[15]
Rhyu DY, Yang Y, Ha H, et al. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells [J]. J Am Soc Nephrol, 2005,16(3): 667-675.
[16]
Bondi CD, Manickam N, Lee DY, et al. NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts [J]. J Am Soc Nephrol, 2010, 21(1): 93-102.
[17]
Hagiwara M, Bledsoe G, Yang ZR, et al. Intermedin ameliorates vascular and renal injury by inhibition of oxidative stress [J]. Am J Physiol Renal Physiol, 2008, 295(6): F1735-F1743.
[1]
Duffield JS. Cellular and molecular mechanisms in kidney fibrosis [J]. J Clin Invest, 2014, 124(6): 2299-2306.
[2]
Nrregaard R, Bdker T, Jensen BL, et al. Increased renal adrenomedullin expression in rats with ureteral obstruction [J]. Am J Physiol Regul Integr Comp Physiol, 2009, 296(1): R185-R192.
[3]
Ito K, Yoshii H, Asano T, et al. Adrenomedullin increases renal nitric oxide production and ameliorates renal injury in mice with unilateral ureteral obstruction [J]. J Urol, 2010, 183(4): 1630-1635.
[4]
Nagae T, Mori K, Mukoyama M, et al. Adrenomedullin inhibits connective tissue growth factor expression, extracellular signal-regulated kinase activation and renal fibrosis [J]. Kidney Int, 2008, 74(1): 70-80.
[5]
Roh J, Chang CL, Bhalla A, et al. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes [J]. J Biol Chem, 2004, 279(8): 7264-7274.
[6]
Takei Y, Inoue K, Ogoshi M, et al. Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator [J]. FEBS Lett, 2004, 556(1-3): 53-58.
[7]
Qiao X, Li RS, Li H, et al. Intermedin protects against renal ischemia-reperfusion injury by inhibition of oxidative stress [J]. Am J Physiol Renal Physiol, 2013, 304(1): F112- F119.
[8]
Rhyu DY, Park J, Sharma BR, et al. Role of reactive oxygen species in transforming growth factor-beta1-induced extracellular matrix accumulation in renal tubular epithelial cells [J]. Transplant Proc, 2012, 44(3): 625-628.
[9]
Klein J, Gonzalez J, Duchene J, et al. Delayed blockade of the kinin B1 receptor reduces renal inflammation and fibrosis in obstructive nephropathy [J]. FASEB J, 2009, 23(1):134-142.
[10]
Venkatachalam MA, Weinberg JM. New wrinkles in old receptors: core fucosylation is yet another target to inhibit TGF-β signaling [J]. Kidney Int, 2013, 84(1): 11-14.
[11]
Pohlers D, Brenmoehl J, Löffler I, et al. TGF-beta and fibrosis in different organs-molecular pathway imprints [J]. Biochim Biophys Acta, 2009, 1792 (8): 746-756.
[18]
Zhang HY, Jiang W, Liu JY, et al. Intermedin is upregulated and has protective roles in a mouse ischemia/reperfusion model [J]. Hypertens Res, 2009, 32(10): 861-868.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[3] 周川鹏, 杨浩, 魏微阳, 王奇, 黄亚强. 微创与标准通道经皮肾镜治疗肾结石合并肾功能不全的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 470-475.
[4] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[5] 杨巧巧, 佟琰, 王宏, 谢大洋, 张玉婷, 张庆涛, 于茜, 赵小淋, 曹雪莹, 周建辉. 人工肾研究:文献计量学分析[J]. 中华肾病研究电子杂志, 2023, 12(05): 241-247.
[6] 张妍, 吕强, 韩笑, 王旭, 刘冉, 张利, 陈香美. 挤压综合征大鼠核心脏器肾心肺损伤特点研究[J]. 中华肾病研究电子杂志, 2023, 12(05): 248-253.
[7] 刘一, 文旖旎, 吴映辉. 过敏性紫癜患儿外周血辅助性T细胞、调节性T细胞细胞因子与肾损害的相关性分析[J]. 中华肾病研究电子杂志, 2023, 12(05): 271-275.
[8] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[9] 张艳如, 苏晓乐, 王利华. 丝氨酸蛋白酶Corin与肾脏疾病的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 220-223.
[10] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[11] 杨长沅, 凌曦淘, 丘伽美, 段若兰, 李琴, 林玉婕, 秦新东, 侯海晶, 卢富华, 苏国彬. 慢性肾脏病患者衰弱的筛查/评估工具研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 229-233.
[12] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[13] 于天宇, 杨悦, 陆海涛, 田志永, 李文歌. 高龄急性肾损伤患者连续性肾脏替代治疗的预后及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(03): 134-138.
[14] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[15] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
阅读次数
全文


摘要