切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2024, Vol. 13 ›› Issue (05) : 283 -287. doi: 10.3877/cma.j.issn.2095-3216.2024.05.008

综述

氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展
郭俊楠1,2,3, 林惠1,2,3, 任艺林1,2,3, 乔晞1,2,3,()   
  1. 1.030001 太原,山西医科大学第二医院肾内科
    2.030001 太原,山西省肾脏病研究所
    3.030001 太原,山西医科大学肾脏疾病研究中心
  • 收稿日期:2024-06-28 出版日期:2024-10-28
  • 通信作者: 乔晞

Progress of research on the role of amino acid metabolism disturbance in the transition from AKI to CKD

Junnan Guo1,2,3, Hui Lin1,2,3, Yilin Ren1,2,3, Xi Qiao1,2,3,()   

  1. 1.Department of Nephrology, Second Hospital of Shanxi Medical University;Taiyuan 030001, China
    2.Shanxi Kidney Disease Institute; Taiyuan 030001, China
    3.Kidney Research Center of Shanxi Medical University; Taiyuan 030001, China
  • Received:2024-06-28 Published:2024-10-28
  • Corresponding author: Xi Qiao
引用本文:

郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.

Junnan Guo, Hui Lin, Yilin Ren, Xi Qiao. Progress of research on the role of amino acid metabolism disturbance in the transition from AKI to CKD[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(05): 283-287.

急性肾损伤(AKI)的特点是肾功能迅速恶化,罹患后即使肾功能完全恢复,也可能会遗留肾脏损害进而导致慢性肾脏病(CKD)。 目前,AKI 转变为CKD 的机制尚不完全清楚,AKI 相关的氨基酸代谢异常可能在AKI 向CKD 转变过程中具有重要作用。 本文综述了氨基酸代谢异常在AKI向CKD 转变过程中的作用研究进展,旨在为防治AKI 向CKD 转变提供新思路。

Acute kidney injury (AKI) is characterized by rapid deterioration of kidney function,whose remnant renal injury may progressively lead to chronic kidney disease (CKD) even after the complete recovery of kidney function. At present,the mechanism of transition from AKI to CKD has not been fully understood,in which AKI-related abnormalities of amino acid metabolism may play an important role in the transition from AKI to CKD. This article reviewed the research progress on the role of abnormalities in amino acid metabolism in the transition from AKI to CKD,aiming to provide new ideas for preventing the transition from AKI to CKD.

图1 尿素循环 注:ASL:argininosuccinate lyase,精氨酸琥珀酸裂解酶;ASS:argininosuccinate synthetase,精氨酸琥珀酸合成酶;NOS:nitric oxide synthase,一氧化氮合酶;ARG:arginase,精氨酸酶;NO:nitric oxide,一氧化氮;OTC:ornithine carbamoyltransferase,鸟氨酸转氨基甲酰基酶;ODC:ornithine decarboxylase,鸟氨酸脱羧酶;PYCR:Δ1-pyrroline-5-carboxylate reductase,Δ1-吡咯啉-5-羧酸还原酶
[1]
Perschinka F,Peer A,Joannidis M. Artificial intelligence and acute kidney injury [J]. Med Klin Intensivmed Notfmed,2024,119(3):199-207.
[2]
Bejoy J,Qian ES,Woodard LE. Tissue culture models of AKI:from tubule cells to human kidney organoids [J]. J Am Soc Nephrol,2022,33(3):487-501.
[3]
Horne KL,Viramontes-Hörner D,Packington R,et al. A comprehensive description of kidney disease progression after acute kidney injury from a prospective,parallel-group cohort study [J]. Kidney Int,2023,104(6):1185-1193.
[4]
Wang Z,Zhang C. From AKI to CKD: maladaptive repair and the underlying mechanisms [J]. Int J Mol Sci,2022,23(18):10880.
[5]
Zhao L,Hao Y,Tang S,et al. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury [J]. Front Cell Dev Biol,2023,11:1276217.
[6]
Ling ZN,Jiang YF,Ru JN,et al. Amino acid metabolism in health and disease [J]. Signal Transduct Target Ther,2023,8(1):345.
[7]
Patschan D,Patschan S,Matyukhin I,et al. Metabolomics in acute kidney injury: the experimental perspective [J]. J Clin Med Res,2023,15(6):283-291.
[8]
Dai X,Shen L. Advances and trends in omics technology development [J]. Front Med (Lausanne),2022,9:911861.
[9]
Lacy P. Metabolomics of sepsis-induced acute lung injury:a new approach for biomarkers [J]. Am J Physiol Lung Cell Mol Physiol,2011,300(1): L1-L3.
[10]
林惠,乔晞. 表观遗传修饰在急性肾损伤向慢性肾脏病转变中的作用[J]. 中华肾脏病杂志,2020,36(2):171-176.
[11]
Moreno-Gordaliza E,González-Nicolás Má,Lázaro A,et al.Untargeted metabolomics analysis of serum and urine unveils the protective effect of cilastatin on altered metabolic pathways during cisplatin-induced acute kidney injury [J]. Biochem Pharmacol,2024,227:116435.
[12]
Vašková J,Kocan L,Vaško L,et al. Glutathione-related enzymes and proteins:a review [J]. Molecules,2023,28(3):1447.
[13]
Ferreira MJ,Rodrigues TA,Pedrosa AG,et al. Glutathione and peroxisome redox homeostasis [J]. Redox Biol,2023,67:102917.
[14]
Guo R,Duan J,Pan S,et al. The road from AKI to CKD:molecular mechanisms and therapeutic targets of ferroptosis [J].Cell Death Dis,2023,14(7):426.
[15]
Ide S,Kobayashi Y,Ide K,et al. Ferroptotic stress promotes the accumulation of proinflammatory proximal tubular cells in maladaptive renal repair [J]. Elife,2021,10: e68603.
[16]
王小巍,张红艳,刘锐,等. 谷胱甘肽的研究进展[J]. 中国药剂学杂志(网络版),2019,17(4):141-148.
[17]
Costa I,Barbosa DJ,Benfeito S,et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases [ J].Pharmacol Ther,2023,244:108373.
[18]
Lin W,Wang C,Liu G,et al. SLC7A11/xCT in cancer:biological functions and therapeutic implications [J]. Am J Cancer Res,2020,10(10):3106-3126.
[19]
Ding C,Ding X,Zheng J,et al. MiR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury [J]. Cell Death Dis,2020,11(10):929.
[20]
Pei J,Pan X,Wei G,et al. Research progress of glutathione peroxidase family (GPX) in redoxidation [J]. Front Pharmacol,2023,14:1147414.
[21]
Ni L,Yuan C,Wu X. Targeting ferroptosis in acute kidney injury [J]. Cell Death Dis,2022,13(2):182.
[22]
Caldwell RW,Rodriguez PC,Toque HA,et al. Arginase: a multifaceted enzyme important in health and disease [J]. Physiol Rev,2018,98(2):641-665.
[23]
Maric S,Restin T,Muff JL,et al. Citrulline,biomarker of enterocyte functional mass and dietary supplement. Metabolism,transport,and current evidence for clinical use [J]. Nutrients,2021,13(8):2794.
[24]
Hara M,Torisu K,Tomita K,et al. Arginase 2 is a mediator of ischemia-reperfusion injury in the kidney through regulation of nitrosative stress [J]. Kidney Int,2020,98(3):673-685.
[25]
Zahedi K,Barone S,Soleimani M. Polyamine catabolism in acute kidney injury [J]. Int J Mol Sci,2019,20(19):4790.
[26]
Zahedi K,Barone S,Brooks M,et al. Polyamine catabolism and its role in renal injury and fibrosis in mice subjected to repeated lowdose cisplatin treatment [J]. Biomedicines,2024,12(3):640.
[27]
Bahri S,Zerrouk N,Aussel C,et al. Citrulline: from metabolism to therapeutic use [J]. Nutrition,2013,29(3):479-484.
[28]
Rashid J,Kumar SS,Job KM,et al. Therapeutic potential of citrulline as an arginine supplement: a clinical pharmacology review [J]. Paediatr Drugs,2020,22(3):279-293.
[29]
Wijnands KA,Castermans TM,Hommen MP,et al. Arginine and citrulline and the immune response in sepsis[J]. Nutrients,2015,7(3):1426-1463.
[30]
Taguchi K,Sugahara S,Elias BC,et al. IL-22 is secreted by proximal tubule cells and regulates DNA damage response and cell death in acute kidney injury [J]. Kidney Int,2024,105(1):99-114.
[31]
Tanuseputero SA,Lin MT,Yeh SL,et al. Intravenous arginine administration downregulates NLRP3 inflammasome activity and attenuates acute kidney injury in mice with polymicrobial sepsis[J]. Mediators Inflamm,2020,2020:3201635.
[32]
Zhou LY,Liu K,Yin WJ,et al. Arginase 2 mediates contrastinduced acute kidney injury via facilitating nitrosative stress in tubular cells [J]. Redox Biol,2023,67:102929.
[33]
Liang M,Wang Z,Li H,et al. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway [J]. Food Chem Toxicol,2018,115:315-328.
[34]
Caldwell RW,Rodriguez PC,Toque HA,et al. Arginase: a multifaceted enzyme important in health and disease [J]. Physiol Rev,2018,98(2):641-665.
[35]
赵晓庆,乔晞. 急性肾损伤向慢性肾脏病转变的机制研究进展[J]. 生命科学,2019,31(3):279-283.
[36]
Yu J,Yu C,Bayliss G,et al. Protein arginine methyltransferases in renal development,injury,repair,and fibrosis [J]. Front Pharmacol,2023,14:1123415.
[37]
Nakayama Y,Ueda S,Yamagishi S,et al. Asymmetric dimethylarginine accumulates in the kidney during ischemia/reperfusion injury [J]. Kidney Int,2014,85(3):570-857.
[38]
Cheng HH,Kuo CC,Yan JL,et al. Control of cyclooxygenase-2 expression and tumorigenesis by endogenous 5-methoxytryptophan[J]. Proc Natl Acad Sci USA,2012,109(33):13231-13236.
[39]
Zheng X,Zhang A,Binnie M,et al. Kynurenine 3-monooxygenase is a critical regulator of renal ischemia-reperfusion injury [J]. Exp Mol Med,2019,51(2):1-14.
[40]
Krupa A,Krupa MM,Pawlak K. Indoleamine 2,3 dioxygenase 1-the potential link between the innate immunity and the ischemia-reperfusion-induced acute kidney injury? [J] Int J Mol Sci,2022,23(11):6176.
[41]
Piret SE,Guo Y,Attallah AA,et al. Krüppel-like factor 6-mediated loss of BCAA catabolism contributes to kidney injury in mice and humans [J]. Proc Natl Acad Sci USA,2021,118(23): e2024414118.
[1] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[2] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[3] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[4] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[5] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[6] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[7] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[8] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[9] 王小龙, 吴杰, 段姝伟, 王超卉, 潘娜, 白圆圆, 李航天, 蔡广研. 不同等级体力活动对慢性肾脏病患者预后的影响[J]. 中华肾病研究电子杂志, 2024, 13(03): 121-128.
[10] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[11] 肖伍豪, 刘抗寒. 晚期慢性肾脏病患者骨质疏松症的治疗研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 92-96.
[12] 吴燕升, 张先闻, 王琳. 慢性肾脏病患者肠道微生态与免疫的关系研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 101-105.
[13] 张轶男, 朱国贞. 急性肾损伤向慢性肾脏病转变研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 106-112.
[14] 崔秋子, 姚红曼, 艾迎春. 监测NLR、PLR、CAR、白蛋白、血钙及血糖指标水平对急性胰腺炎患者急性肾损伤的预测价值分析[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 244-248.
[15] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
阅读次数
全文


摘要