切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2024, Vol. 13 ›› Issue (05) : 279 -282. doi: 10.3877/cma.j.issn.2095-3216.2024.05.007

综述

造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展
杜霞1, 马梦青2, 曹长春1,()   
  1. 1.211166 南京医科大学附属逸夫医院肾内科
    2.210006 南京医科大学附属南京医院肾内科
  • 收稿日期:2024-04-11 出版日期:2024-10-28
  • 通信作者: 曹长春
  • 基金资助:
    国家自然科学基金(82170698)

Research progress on the pathogenesis and intervention targets of contrast-induced acute kidney injury

Xia Du1, Mengqing Ma2, Changchun Cao1,()   

  1. 1.Department of Nephrology, Sir Run Run Hospital,Nanjing Medical University, Nanjing 211166
    2.Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006; Jiangsu Province, China
  • Received:2024-04-11 Published:2024-10-28
  • Corresponding author: Changchun Cao
引用本文:

杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.

Xia Du, Mengqing Ma, Changchun Cao. Research progress on the pathogenesis and intervention targets of contrast-induced acute kidney injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(05): 279-282.

随着造影剂在临床诊疗中应用增加,造影剂诱导的急性肾损伤已成为肾功能不全的主要原因之一。 造影剂诱导的急性肾损伤表现为造影剂进入血管内导致肾功能突然下降,相关病理生理机制包括肾髓质缺血缺氧、造影剂直接毒性、氧化应激和炎症。 迄今,除降低造影剂毒性策略外,尚无防治造影剂诱导的急性肾损伤的有效手段。 本文综述了造影剂诱导急性肾损伤的分子机制,并介绍了细胞凋亡、炎症、氧化应激以及肾脏血流动力学相关靶点在防治造影剂诱导的急性肾损伤中的潜在价值,以期为降低造影剂诱导的急性肾损伤发生率和改善患者预后提供参考。

With the increasing use of contrast media in clinical diagnosis and treatment,contrastinduced acute kidney injury (CIAKI) has become one of the main causes of renal insufficiency. CIAKI is characterized by a sudden decline in kidney function following contrast agent administration. The underlying pathophysiological mechanisms include renal medullary ischemia,direct contrast agent toxicity,oxidative stress,and inflammation. So far,except for the strategy of reducing the toxicity of contrast media,there is no effective means to prevent and treat CIAKI. This article reviewed the molecular mechanism of CIAKI,and introduced the potential value of targets related to apoptosis,inflammation,oxidative stress,and renal hemodynamic for the prevention and treatment of CIAKI,in order to provide reference for reducing the incidence of CIAKI,and improving the prognosis of the patients.

图1 造影剂诱导的急性肾损伤的发病机制及干预靶点
[1]
Cho E,Ko G-J. The pathophysiology and the management of radiocontrast-induced nephropathy [J]. Diagnostics (Basel),2022,12(1):180.
[2]
Gu C-H,Wang X-Z,Han Y-L,et al. Predictors of contrastinduced acute kidney injury in patients with coronary artery disease receiving contrast agents twice within 30 days [J]. Mil Med Res,2020,7(1):14.
[3]
Somkereki C,Palfi R,Scridon A. Prevention of contrastassociated acute kidney injury in an era of increasingly complex interventional procedures [J]. Front Med (Lausanne),2024,10:1180861.
[4]
Chang W-T,Sun C-K,Wu J-Y,et al. Association of prognostic nutritional index with risk of contrast induced nephropathy: a meta-analysis [J]. Front Nutr,2023,10:1154409.
[5]
Gonzalez-Nicolas MA,Gonzalez-Guerrero C,Goicoechea M,et al. Biomarkers in contrast-induced acute kidney injury: towards a new perspective [J]. Int J Mol Sci,2024,25(6):3438.
[6]
Seeliger E,Sendeski M,Rihal CS,et al. Contrast-induced kidney injury: mechanisms,risk factors,and prevention [J].Eur Heart J,2012,33(16):2007-2015.
[7]
Paludan SR,Reinert LS,Hornung V. DNA-stimulated cell death: implications for host defence,inflammatory diseases and cancer [J]. Nat Rev Immunol,2019,19(3):141-153.
[8]
Liu J,Zhao N,Shi G,et al. Geniposide ameliorated sepsisinduced acute kidney injury by activating PPARγ [J]. Aging(Albany NY),2020,12(22):22744-22758.
[9]
Yue J,Lopez JM. Understanding MAPK signaling pathways in apoptosis [J]. Int J Mol Sci,2020,21(7):2346.
[10]
陈杰桓,许志荣,刘颖培,等. 超声造影对急性肾损伤治疗后肾血流灌注水平的评价[J/OL]. 中华腔镜泌尿外科杂志(电子版),2023,17(1):58-62.
[11]
Tsarouhas K,Tsitsimpikou C,Papantoni X,et al. Oxidative stress and kidney injury in trans-radial catheterization [J].Biomed Rep,2018,8(5):417-425.
[12]
Scholz H,Boivin FJ,Schmidt-Ott KM,et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection [J]. Nat Rev Nephrol,2021,17(5):335-349.
[13]
Chen C,Ge J,Gao Y,et al. Ultrasmall superparamagnetic iron oxide nanoparticles: a next generation contrast agent for magnetic resonance imaging [ J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol,2022,14(1): e1740.
[14]
Singh R,Letai A,Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins [J].Nat Rev Mol Cell Biol,2019,20(3):175-193.
[15]
Liu C,Yao Q,Hu T,et al. Cathepsin B deteriorates diabetic cardiomyopathy induced by streptozotocin via promoting NLRP3-mediated pyroptosis [J]. Mol Ther Nucleic Acids,2022,30:198-207.
[16]
Kim JY,Barua S,Huang MY,et al. Heat shock protein 70(HSP70) induction: chaperonotherapy for neuroprotection after brain injury [J]. Cells,2020,9(9):2020.
[17]
Zhang Y,Song C,Ni W,et al. HSP70 ameliorates septic acute kidney injury via binding with TRAF6 to inhibit of inflammationmediated apoptosis[J]. J Inflamm Res,2022,15:2213-2228.
[18]
Warren CFA,Wong-Brown MW,Bowden NA. BCL-2 family isoforms in apoptosis and cancer [J]. Cell Death Dis,2019,10(3):177.
[19]
Zhang S,Li R,Dong W,et al. RIPK3 mediates renal tubular epithelial cell apoptosis in endotoxin-induced acute kidney injury[J]. Mol Med Rep,2019,20(2):1613-1620.
[20]
Wang Z,Gall JM,Bonegio R,et al. Nucleophosmin,a critical Bax cofactor in ischemia-induced cell death [J]. Mol Cell Biol,2013,33(10):1916-1924.
[21]
Liu X,Li Q,Sun L,et al. miR-30e-5p regulates autophagy and apoptosis by targeting beclin1 involved in contrast-induced acute kidney injury [J]. Curr Med Chem,2021,28(38): 7974-7984.
[22]
Askari H,Raeis-Abdollahi E,Abazari MF,et al. Recent findings on the role of microRNAs in genetic kidney diseases[J]. Mol Biol Rep,2022,49(7):7039-7056.
[23]
Sketch MH Jr,Whelton A,Schollmayer E,et al. Prevention of contrast media-induced renal dysfunction with prostaglandin E1:a randomized,double-blind,placebo-controlled study [J]. Am J Ther,2001,8(3):155-162.
[24]
Xiong M,Chen H,Fan Y,et al. Tubular Elabela-APJ axis attenuates ischemia-reperfusion induced acute kidney injury and the following AKI-CKD transition by protecting renal microcirculation [J]. Theranostics,2023,13(10):3387-3401.
[25]
Wang Z,Zhang Z,Li Y,et al. Endothelial-derived complement factor D contributes to endothelial dysfunction in malignant nephrosclerosis via local complement activation [J]. Hypertens Res,2023,46(7):1759-1770.
[26]
Morawietz H,Brendel H,Diaba-Nuhoho P,et al. Cross-talk of NADPH oxidases and inflammation in obesity [J]. Antioxidants(Basel),2023,12(8):1589.
[27]
van der Pol A,van Gilst WH,Voors AA,et al. Treating oxidative stress in heart failure: past,present and future [J].Eur J Heart Fail,2019,21(4):425-435.
[28]
Kusirisin P,Chattipakorn SC,Chattipakorn N. Contrast-induced nephropathy and oxidative stress: mechanistic insights for better interventional approaches[J]. J Transl Med,2020,18(1):400.
[29]
Ma J,Guillot A,Yang Z,et al. Distinct histopathological phenotypes of severe alcoholic hepatitis suggest different mechanisms driving liver injury and failure [J]. J Clin Invest,2022,132(14): e157780.
[30]
Xu J,Ma L,Fu P. MicroRNA-30c attenuates contrast-induced acute kidney injury by suppressing NLRP3 inflammasome [J].Int Immunopharmacol,2020,87:106457.
[31]
Yang C,Xu H,Yang D,et al. A renal YY1-KIM1-DR5 axis regulates the progression of acute kidney injury [J]. Nat Commun,2023,14(1):4261.
[32]
Naeini MB,Bianconi V,Pirro M,et al. The role of phosphatidylserine recognition receptors in multiple biological functions [J]. Cell Mol Biol Lett,2020,25:23.
[33]
Li N,Chen J,Wang P,et al. Major signaling pathways and key mediators of macrophages in acute kidney injury [J]. Mol Med Rep,2021,23(6):455.
[34]
Giampieri F,Afrin S,Forbes-Hernandez TY,et al. Autophagy in human health and disease: novel therapeutic opportunities[J]. Antioxid Redox Signal,2019,30(4):577-634.
[1] 蚁淳, 袁冬生, 熊学军. 系统免疫炎症指数与骨密度降低和骨质疏松的关联[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 609-617.
[2] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[3] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[4] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[5] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[6] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[7] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[8] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[9] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[10] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[11] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[12] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[13] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[14] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要