切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2024, Vol. 13 ›› Issue (05) : 279 -282. doi: 10.3877/cma.j.issn.2095-3216.2024.05.007

综述

造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展
杜霞1, 马梦青2, 曹长春1,()   
  1. 1.211166 南京医科大学附属逸夫医院肾内科
    2.210006 南京医科大学附属南京医院肾内科
  • 收稿日期:2024-04-11 出版日期:2024-10-28
  • 通信作者: 曹长春
  • 基金资助:
    国家自然科学基金(82170698)

Research progress on the pathogenesis and intervention targets of contrast-induced acute kidney injury

Xia Du1, Mengqing Ma2, Changchun Cao1,()   

  1. 1.Department of Nephrology, Sir Run Run Hospital,Nanjing Medical University, Nanjing 211166
    2.Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006; Jiangsu Province, China
  • Received:2024-04-11 Published:2024-10-28
  • Corresponding author: Changchun Cao
引用本文:

杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.

Xia Du, Mengqing Ma, Changchun Cao. Research progress on the pathogenesis and intervention targets of contrast-induced acute kidney injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(05): 279-282.

随着造影剂在临床诊疗中应用增加,造影剂诱导的急性肾损伤已成为肾功能不全的主要原因之一。 造影剂诱导的急性肾损伤表现为造影剂进入血管内导致肾功能突然下降,相关病理生理机制包括肾髓质缺血缺氧、造影剂直接毒性、氧化应激和炎症。 迄今,除降低造影剂毒性策略外,尚无防治造影剂诱导的急性肾损伤的有效手段。 本文综述了造影剂诱导急性肾损伤的分子机制,并介绍了细胞凋亡、炎症、氧化应激以及肾脏血流动力学相关靶点在防治造影剂诱导的急性肾损伤中的潜在价值,以期为降低造影剂诱导的急性肾损伤发生率和改善患者预后提供参考。

With the increasing use of contrast media in clinical diagnosis and treatment,contrastinduced acute kidney injury (CIAKI) has become one of the main causes of renal insufficiency. CIAKI is characterized by a sudden decline in kidney function following contrast agent administration. The underlying pathophysiological mechanisms include renal medullary ischemia,direct contrast agent toxicity,oxidative stress,and inflammation. So far,except for the strategy of reducing the toxicity of contrast media,there is no effective means to prevent and treat CIAKI. This article reviewed the molecular mechanism of CIAKI,and introduced the potential value of targets related to apoptosis,inflammation,oxidative stress,and renal hemodynamic for the prevention and treatment of CIAKI,in order to provide reference for reducing the incidence of CIAKI,and improving the prognosis of the patients.

图1 造影剂诱导的急性肾损伤的发病机制及干预靶点
[1]
Cho E,Ko G-J. The pathophysiology and the management of radiocontrast-induced nephropathy [J]. Diagnostics (Basel),2022,12(1):180.
[2]
Gu C-H,Wang X-Z,Han Y-L,et al. Predictors of contrastinduced acute kidney injury in patients with coronary artery disease receiving contrast agents twice within 30 days [J]. Mil Med Res,2020,7(1):14.
[3]
Somkereki C,Palfi R,Scridon A. Prevention of contrastassociated acute kidney injury in an era of increasingly complex interventional procedures [J]. Front Med (Lausanne),2024,10:1180861.
[4]
Chang W-T,Sun C-K,Wu J-Y,et al. Association of prognostic nutritional index with risk of contrast induced nephropathy: a meta-analysis [J]. Front Nutr,2023,10:1154409.
[5]
Gonzalez-Nicolas MA,Gonzalez-Guerrero C,Goicoechea M,et al. Biomarkers in contrast-induced acute kidney injury: towards a new perspective [J]. Int J Mol Sci,2024,25(6):3438.
[6]
Seeliger E,Sendeski M,Rihal CS,et al. Contrast-induced kidney injury: mechanisms,risk factors,and prevention [J].Eur Heart J,2012,33(16):2007-2015.
[7]
Paludan SR,Reinert LS,Hornung V. DNA-stimulated cell death: implications for host defence,inflammatory diseases and cancer [J]. Nat Rev Immunol,2019,19(3):141-153.
[8]
Liu J,Zhao N,Shi G,et al. Geniposide ameliorated sepsisinduced acute kidney injury by activating PPARγ [J]. Aging(Albany NY),2020,12(22):22744-22758.
[9]
Yue J,Lopez JM. Understanding MAPK signaling pathways in apoptosis [J]. Int J Mol Sci,2020,21(7):2346.
[10]
陈杰桓,许志荣,刘颖培,等. 超声造影对急性肾损伤治疗后肾血流灌注水平的评价[J/OL]. 中华腔镜泌尿外科杂志(电子版),2023,17(1):58-62.
[11]
Tsarouhas K,Tsitsimpikou C,Papantoni X,et al. Oxidative stress and kidney injury in trans-radial catheterization [J].Biomed Rep,2018,8(5):417-425.
[12]
Scholz H,Boivin FJ,Schmidt-Ott KM,et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection [J]. Nat Rev Nephrol,2021,17(5):335-349.
[13]
Chen C,Ge J,Gao Y,et al. Ultrasmall superparamagnetic iron oxide nanoparticles: a next generation contrast agent for magnetic resonance imaging [ J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol,2022,14(1): e1740.
[14]
Singh R,Letai A,Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins [J].Nat Rev Mol Cell Biol,2019,20(3):175-193.
[15]
Liu C,Yao Q,Hu T,et al. Cathepsin B deteriorates diabetic cardiomyopathy induced by streptozotocin via promoting NLRP3-mediated pyroptosis [J]. Mol Ther Nucleic Acids,2022,30:198-207.
[16]
Kim JY,Barua S,Huang MY,et al. Heat shock protein 70(HSP70) induction: chaperonotherapy for neuroprotection after brain injury [J]. Cells,2020,9(9):2020.
[17]
Zhang Y,Song C,Ni W,et al. HSP70 ameliorates septic acute kidney injury via binding with TRAF6 to inhibit of inflammationmediated apoptosis[J]. J Inflamm Res,2022,15:2213-2228.
[18]
Warren CFA,Wong-Brown MW,Bowden NA. BCL-2 family isoforms in apoptosis and cancer [J]. Cell Death Dis,2019,10(3):177.
[19]
Zhang S,Li R,Dong W,et al. RIPK3 mediates renal tubular epithelial cell apoptosis in endotoxin-induced acute kidney injury[J]. Mol Med Rep,2019,20(2):1613-1620.
[20]
Wang Z,Gall JM,Bonegio R,et al. Nucleophosmin,a critical Bax cofactor in ischemia-induced cell death [J]. Mol Cell Biol,2013,33(10):1916-1924.
[21]
Liu X,Li Q,Sun L,et al. miR-30e-5p regulates autophagy and apoptosis by targeting beclin1 involved in contrast-induced acute kidney injury [J]. Curr Med Chem,2021,28(38): 7974-7984.
[22]
Askari H,Raeis-Abdollahi E,Abazari MF,et al. Recent findings on the role of microRNAs in genetic kidney diseases[J]. Mol Biol Rep,2022,49(7):7039-7056.
[23]
Sketch MH Jr,Whelton A,Schollmayer E,et al. Prevention of contrast media-induced renal dysfunction with prostaglandin E1:a randomized,double-blind,placebo-controlled study [J]. Am J Ther,2001,8(3):155-162.
[24]
Xiong M,Chen H,Fan Y,et al. Tubular Elabela-APJ axis attenuates ischemia-reperfusion induced acute kidney injury and the following AKI-CKD transition by protecting renal microcirculation [J]. Theranostics,2023,13(10):3387-3401.
[25]
Wang Z,Zhang Z,Li Y,et al. Endothelial-derived complement factor D contributes to endothelial dysfunction in malignant nephrosclerosis via local complement activation [J]. Hypertens Res,2023,46(7):1759-1770.
[26]
Morawietz H,Brendel H,Diaba-Nuhoho P,et al. Cross-talk of NADPH oxidases and inflammation in obesity [J]. Antioxidants(Basel),2023,12(8):1589.
[27]
van der Pol A,van Gilst WH,Voors AA,et al. Treating oxidative stress in heart failure: past,present and future [J].Eur J Heart Fail,2019,21(4):425-435.
[28]
Kusirisin P,Chattipakorn SC,Chattipakorn N. Contrast-induced nephropathy and oxidative stress: mechanistic insights for better interventional approaches[J]. J Transl Med,2020,18(1):400.
[29]
Ma J,Guillot A,Yang Z,et al. Distinct histopathological phenotypes of severe alcoholic hepatitis suggest different mechanisms driving liver injury and failure [J]. J Clin Invest,2022,132(14): e157780.
[30]
Xu J,Ma L,Fu P. MicroRNA-30c attenuates contrast-induced acute kidney injury by suppressing NLRP3 inflammasome [J].Int Immunopharmacol,2020,87:106457.
[31]
Yang C,Xu H,Yang D,et al. A renal YY1-KIM1-DR5 axis regulates the progression of acute kidney injury [J]. Nat Commun,2023,14(1):4261.
[32]
Naeini MB,Bianconi V,Pirro M,et al. The role of phosphatidylserine recognition receptors in multiple biological functions [J]. Cell Mol Biol Lett,2020,25:23.
[33]
Li N,Chen J,Wang P,et al. Major signaling pathways and key mediators of macrophages in acute kidney injury [J]. Mol Med Rep,2021,23(6):455.
[34]
Giampieri F,Afrin S,Forbes-Hernandez TY,et al. Autophagy in human health and disease: novel therapeutic opportunities[J]. Antioxid Redox Signal,2019,30(4):577-634.
[1] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[2] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[3] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[4] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[5] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[6] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[7] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[8] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[9] 张晓青, 唐雯. 基于临床化验指标重新计算的生物标记物在预测腹膜透析患者预后中的作用研究进展[J]. 中华肾病研究电子杂志, 2024, 13(04): 213-218.
[10] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[11] 杭丽, 张耀辉, 孙文恺. 参菝抗瘤液对结直肠腺瘤性息肉术后肠道功能、炎症指标及复发情况的影响[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 413-416.
[12] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[13] 田娜, 韩飞天. 基于CT平扫影像组学模型与系统免疫炎症指数预测急性胰腺炎复发模型的建立[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 355-359.
[14] 李秀玲, 连少锋, 荣刘涛, 李登峰, 饶蕴玉. 利巴韦林联合复方嗜酸乳杆菌治疗轮状病毒肠炎患儿的临床研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 369-372.
[15] 谭欣, 王鹏源, 胡良皞. 慢性胰腺炎抗炎和抗纤维化治疗的研究进展[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 289-296.
阅读次数
全文


摘要