切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2018, Vol. 07 ›› Issue (04) : 167 -171. doi: 10.3877/cma.j.issn.2095-3216.2018.04.007

所属专题: 文献

论著

STAT3抑制剂S3I-201对实验性肾小管间质纤维化的保护作用
梅艳1, 朱凤阁1, 朱晗玉1, 段姝伟1, 洪权1, 马倩1, 蔡广研1, 陈香美1,()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 收稿日期:2018-06-23 出版日期:2018-08-28
  • 通信作者: 陈香美
  • 基金资助:
    国家自然科学基金(81330019,81500566)

Protective effects of STAT3 inhibitor S3I-201 in experimental renal tubulointerstitial fibrosis

Yan Mei1, Fengge Zhu1, Hanyu Zhu1, Shuwei Duan1, Quan Hong1, Qian Ma1, Guangyan Cai1, Xiangmei Chen1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Received:2018-06-23 Published:2018-08-28
  • Corresponding author: Xiangmei Chen
  • About author:
    Corresponding author: Chen Xiangmei, Email:
引用本文:

梅艳, 朱凤阁, 朱晗玉, 段姝伟, 洪权, 马倩, 蔡广研, 陈香美. STAT3抑制剂S3I-201对实验性肾小管间质纤维化的保护作用[J]. 中华肾病研究电子杂志, 2018, 07(04): 167-171.

Yan Mei, Fengge Zhu, Hanyu Zhu, Shuwei Duan, Quan Hong, Qian Ma, Guangyan Cai, Xiangmei Chen. Protective effects of STAT3 inhibitor S3I-201 in experimental renal tubulointerstitial fibrosis[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2018, 07(04): 167-171.

目的

探讨STAT3抑制剂S3I-201对小鼠实验性肾小管间质纤维化的保护作用。

方法

采用单侧输尿管梗阻手术的方法建立肾小管间质纤维化模型。将实验小鼠随机分为药物假手术组(Sham+S3I-201),安慰剂假手术组(Sham+Vehicle),药物造模组(UUO+S3I-201),安慰剂造模组(UUO+Vehicle)4组,通过腹腔注射S3I-201溶液(药物)或0.05%DMSO PBS(安慰剂)给药,每天给药一次。造模第7天时留取肾脏标本,用Masson染色和颜色面积测算法评估胶原蛋白沉积的情况。用qRT-PCR法检测肾组织内趋化因子配体16(CXCL16),白介素-1β(IL-1β),细胞间黏附分子1(ICAM-1),转化生长因子-β(TGF-β),肿瘤坏死因子(TNF-α)的mRNA表达,用免疫组化法染色和免疫印迹法检测PDGFRβ蛋白在梗阻肾脏内的表达。

结果

UUO+Vehicle小鼠的肾间质胶原蛋白沉积显著高于Sham+Vehicle组(P<0.05)。UUO+Vehicle小鼠肾组织CXCL16,IL-1β,ICAM-1,TGF-β,TNF-α的mRNA表达显著高于Sham+Vehicle组(P<0.05),UUO+Vehicle小鼠肾组织血小板来源生长因子受体β(PDGFRβ)蛋白表达显著高于Sham+Vehicle组(P<0.05)。经过S3I-201治疗7 d后,UUO+S3I-201小鼠的上述各项指标均显著低于UUO+Vehicle(P<0.05)。

结论

S3I-201通过抑制多种细胞因子的mRNA表达,以及降低PDGFRβ蛋白的表达,减轻实验性肾小管间质纤维化小鼠的肾间质炎症反应,从而发挥肾脏保护作用。

Objective

To investigate the protective effects of STAT3 inhibitor S3I-201 in experimental renal tubulointerstitial fibrosis of mice.

Methods

A model of renal tubulointerstitial fibrosis was established by the method of unilateral ureteral obstruction (UUO). The experimental mice were randomly divided into a drug-sham operation group (Sham+ S3I-201), a placebo-sham operation group (Sham+ Vehicle), a drug-model group (UUO+ S3I-201), and a placebo-model group (UUO+ Vehicle). The four groups were administered intraperitoneally with S3I-201 solution (drug) or 0.05% DMSO PBS (placebo), once daily. Kidney specimens were taken on the 7th day of modeling, and collagen deposition was assessed by Masson staining and color area measurement algorithm. The qRT-PCR method was used to detect the mRNA expression of chemokine C-X-C-motif ligand 16 (CXCL16), interleukin-1β (IL-1β), intercellular adhesion molecule-1 (ICAM-1), transforming growth factor-β (TGF-β), and tumor necrosis factor-α (TNF-α), while immunohistochemical staining and immunoblotting methods were used to detect the protein expression of platelet-derived growth factor receptor β (PDGFRβ) in the obstructed kidneys.

Results

Renal interstitial collagen deposition was significantly higher in the placebo-model group (UUO+ Vehicle) than in the placebo-sham operation group (Sham+ Vehicle) (P<0.05). The mRNA expression of CXCL16, IL-1β, ICAM-1, TGF-β, and TNF-α were also significantly higher in the placebo-model group (UUO+ Vehicle) than in the placebo-sham operation group (Sham+ Vehicle) (P<0.05). The protein expression of PDGFRβ was significantly higher in the placebo-model group (UUO+ Vehicle) than in the placebo-sham operation group (Sham+ Vehicle) (P<0.05). After S3I-201 treatment for 7 days, the above indexes were significantly lower in the drug-model group (UUO+ S3I-201) than in placebo-model group (UUO+ Vehicle).

Conclusion

S3I-201 had a renal protective effect by inhibiting mRNA expression of various cytokines, decreasing protein expression of PDGFRβ, and reducing renal interstitial inflammation in mice with experimental tubulointerstitial fibrosis.

图1 S3I-201治疗单侧输尿管梗阻小鼠后各组肾脏病理改变和胶原蛋白沉积情况
图2 STAT3抑制剂S3I-201治疗后CXCL16,IL-1β,ICAM-1,TGF-β,TNF-α的mRNA转录情况
图3 单侧输尿管梗阻小鼠应用S3I-201后PDGFRβ阳性数量及PDGFRβ蛋白表达情况
[1]
Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics [J]. Kidney Int, 2006, 69(2): 213-217.
[2]
Eddy AA. Overview of the cellular and molecular basis of kidney fibrosis [J]. Kidney Int Suppl, 2014, 4(1): 2-8.
[3]
Bottinger E, Bitzer M. TGF-beta signaling in renal disease [J]. J Am Soc Nephrol, 2002, 13(10): 2600-2610.
[4]
Bani-Hani AH, Leslie JA, Asanuma H, et al. IL-18 neutralization ameliorates obstruction-induced epithelial-mesenchymal transition and renal fibrosis [J]. Kidney Int, 2009, 76(5): 500-511.
[5]
Misseri R, Meldrum DR, Dinarello CA, et al. TNF-alpha mediates obstruction-induced renal tubular cell apoptosis and proapoptotic signaling [J]. Am J Physiol Renal Physiol, 2005, 288(2): F406-F411.
[6]
Schindler CW. JAK-STAT signaling in human disease [J]. J Clin Invest, 2002, 109(9): 1133-1137.
[7]
Kuratsune M, Masaki T, Hirai T, et al. Signal transducer and activator of transcription 3 involvement in the development of renal interstitial fibrosis after unilateral ureteral obstruction [J]. Nephrology (Carlton), 2007, 12(6): 565-571.
[8]
Cheng F, Wang HW, Cuenca A, et al. A critical role for Stat3 signaling in immune tolerance [J]. Immunity, 2003, 19(3): 425-436.
[9]
Pang M, Ma L, Gong R, et al. A novel STAT3 inhibitor, S3I-201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy [J]. Kidney Int, 2010, 78(3): 257-268.
[10]
Chen G, Lin SC, Chen J, et al. CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis [J]. J Am Soc Nephrol, 2011, 22(10): 1876-1886.
[11]
Kramann R, Schneider RK, DiRocco DP, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis [J]. Cell Stem Cell, 2015, 16(1): 51-66.
[12]
Makihara N, Arimura K, Ago T, et al. Involvement of platelet-derived growth factor receptor beta in fibrosis through extracellular matrix protein production after ischemic stroke [J]. Exp Neurol, 2015, 264: 127-134.
[1] 高建松, 陈晓晓, 冯婷, 包剑锋, 魏淑芳, 潘林. 基于超声瞬时弹性成像的多参数决策树模型评估慢性乙型肝炎患者肝纤维化等级[J]. 中华医学超声杂志(电子版), 2023, 20(09): 923-929.
[2] 骆云凯, 鄢曹鑫, 张宣宣, 李如梅, 王文倩, 洪行行, 夏斌, 邹伟璞, 张珊珊, 陈剑. 声触诊弹性成像检测脾硬度对诊断慢性乙肝肝纤维化程度的应用价值[J]. 中华医学超声杂志(电子版), 2022, 19(11): 1232-1237.
[3] 李沁园, 董常峰, 冯程, 李志艳, 刘李, 何秉昊, 姜伟, 田文硕, 杨帅. 基于弹性成像多模态法评估慢性乙型肝炎肝纤维化程度[J]. 中华医学超声杂志(电子版), 2022, 19(09): 976-982.
[4] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[5] 李婷, 杨学文. 肠壁水肿及肿瘤病灶纤维化对腹腔镜直肠全系膜切除术后吻合口漏的影响[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 328-331.
[6] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[7] 乔雨晴, 沈磊, 周林香, 李湘杰, 严博. 结缔组织生长因子单克隆抗体对小鼠慢性结肠炎肠壁纤维化的作用[J]. 中华结直肠疾病电子杂志, 2023, 12(02): 125-131.
[8] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[9] 罗阳燕, 王少清, 高芳, 沈艳, 张万军, 李莉. 尿毒清颗粒对腹膜透析患者残余肾功能及腹透液纤连蛋白和TGF-β1水平的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 200-204.
[10] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[11] 黄嘉明, 段红霞, 赖逾鹏, 王大吉, 刘兴娇, 沈鑫, 王梅英. 狼疮性肾炎慢性化中肾脏固有细胞的间充质化研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 347-352.
[12] 吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.
[13] 尹丽丽, 管陈, 赵龙, 蒋伟, 秦振志, 李宸羽, 徐岩. 虾青素通过CCN1调节肾间质纤维化的潜在分子作用机制[J]. 中华肾病研究电子杂志, 2022, 11(06): 318-326.
[14] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[15] 吕昆明, 王沙沙, 万军, 令狐恩强. 胃食管反流病与特发性肺纤维化关系的研究进展[J]. 中华胃肠内镜电子杂志, 2023, 10(02): 121-124.
阅读次数
全文


摘要