切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2024, Vol. 13 ›› Issue (03) : 161 -165. doi: 10.3877/cma.j.issn.2095-3216.2024.03.006

论著

益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1、α-平滑肌肌动蛋白表达的影响
王静1, 丁红1,()   
  1. 1. 110034 沈阳,中国医科大学附属第四医院肾内科
  • 收稿日期:2023-05-09 出版日期:2024-06-28
  • 通信作者: 丁红
  • 基金资助:
    "益肾化湿颗粒"临床应用研究和基础研究开放课题(康药合字2020第384号)

Effect of Yishen Huashi granules on expression of TGF-β1 and α-SMA in renal tissues of rats with chronic renal failure

Jing Wang1, Hong Ding1,()   

  1. 1. Department of Nephrology, Fourth Hospital Affiliated to Chinese Medical University, Shenyang 110034, Liaoning Province, China
  • Received:2023-05-09 Published:2024-06-28
  • Corresponding author: Hong Ding
引用本文:

王静, 丁红. 益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1、α-平滑肌肌动蛋白表达的影响[J]. 中华肾病研究电子杂志, 2024, 13(03): 161-165.

Jing Wang, Hong Ding. Effect of Yishen Huashi granules on expression of TGF-β1 and α-SMA in renal tissues of rats with chronic renal failure[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(03): 161-165.

目的

探讨益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1(TGF-β1)、α-平滑肌肌动蛋白(α-SMA)表达的影响。

方法

60只雄性SD大鼠随机分为对照组、模型组、氯沙坦组、益肾化湿颗粒低剂量组和益肾化湿颗粒高剂量组。除对照组外,各组大鼠以腺嘌呤200 mg/(kg·d)灌胃建立慢性肾衰竭动物模型。造模成功后,对照组及模型组给予生理盐水10 ml/(kg·d)灌胃,氯沙坦组给予氯沙坦混悬液10 ml/(kg·d)灌胃,益肾化湿颗粒低剂量组和高剂量组分别给予益肾化湿颗粒混悬液2.5 g/(kg·d)、5.0 g/(kg·d)灌胃。连续给药8周后,逆转录-聚合酶链反应法(RT-PCR)和Western印迹法检测各组大鼠肾组织TGF-β1、α-SMA的mRNA及蛋白表达,Masson染色观察肾组织病理变化。

结果

与对照组比较,模型组TGF-β1和α-SMA的mRNA及蛋白表达显著增加(P均<0.01);与模型组比较,各治疗组TGF-β1和α-SMA的mRNA及蛋白表达均有下降(P均<0.05)。各治疗组组间比较,高剂量组、氯沙坦组TGF-β1和α-SMA的mRNA及蛋白表达低于低剂量组(P均<0.05)。Masson染色显示,各治疗组的胶原沉积均有减少。

结论

益肾化湿颗粒能够减轻腺嘌呤诱导慢性肾衰竭大鼠肾脏TGF-β1和α-SMA的mRNA及蛋白表达,提示其可能具有潜在的改善慢性肾衰竭大鼠肾间质纤维化的作用。

Objective

To investigate the effect of Yishen Huashi granules on the expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) in the kidneys of rats with chronic renal failure.

Methods

Sixty male Sprague-Dawley rats were randomly divided into control group, model group, losartan group, low-dose group, and high-dose group. Except the control group, the other groups of rats were given adenine 200 mg/(kg·d) through gavage to establish the animal model of chronic renal failure. After the modeling was successful, the control group and model group were given 10 ml/(kg·d) of normal saline by gavage, while the losartan group was given 10 ml/(kg·d) of losartan suspension by gavage, and the low-dose group and high-dose group were given 2.5 g/(kg·d) and 5.0 g/(kg·d) of Yishen Huashi granules suspension by gavage, respectively. After 8 weeks of the above treatment, the mRNA and protein expression of TGF-β1 and α-SMA in renal tissues were detected by RT-PCR and Western blotting, and the pathological changes were observed after Masson staining.

Results

Compared with the control group, the model group showed significant increases of the mRNA and protein expression of TGF-β1 and α-SMA (P<0.01). Compared with model group, all the three treatment groups showed decreases of the mRNA and protein expression of TGF-β1 and α-SMA (P<0.05). The mRNA and protein expression of TGF-β1 and α-SMA of the high-dose group and losartan group were lower than those in the low-dose group (all P<0.05). Masson staining showed that collagen deposition was reduced in all the three treatment groups.

Conclusion

Yishen Huashi granules could reduce the renal mRNA and protein expression of TGF-β1 and α-SMA in rats with chronic renal failure induced by adenine, suggesting that it might have a potential effect on improving renal interstitial fibrosis in rats with chronic renal failure.

表1 大鼠TGF-β1和α-SMA等引物设计
图1 大鼠肾组织Masson染色(×200)注:A:对照组;B:模型组;C:益肾化湿颗粒低剂量组;D:益肾化湿颗粒高剂量组;E:氯沙坦组;蓝色染色为沉积的胶原纤维
图2 RT-PCR检测各组大鼠TGF-β1及α-SMA mRNA表达与比较注:β-actin:β-肌动蛋白,作为内参照;与对照组相比,aP<0.01;与模型组对比,bP<0.05;与益肾化湿颗粒低剂量组对比,cP<0.05
图3 Western印迹检测各组大鼠TGF-β1及α-SMA蛋白表达与比较注:β-actin:β-肌动蛋白,作为内参照;注:与对照组相比,aP<0.01;与模型组对比,bP<0.05;与益肾化湿颗粒低剂量组对比,cP<0.05
[1]
Zhang F, Zhou X, Zou H, et al. SAA1 is transcriptionally activated by STAT3 and accelerates renal interstitial fibrosis by inducing endoplasmic reticulum stress [J]. Exp Cell Res, 2021, 408(1): 112856.
[2]
高洁,刘益涛,董华,等. 三七总皂甙通过Smads信号通路减缓慢性肾衰竭大鼠肾间质纤维化进程的作用研究[J]. 中药新药与临床药理2021, 32(6): 799-805.
[3]
涂立,蹇淑娟,潘竞,等. 成纤维细胞激活蛋白在肾间质纤维化大鼠肾脏组织中的表达及意义[J]. 广西医科大学学报2021, 38(5): 985-988.
[4]
Zhou R, Liao J, Cai D, et al. Nupr1 mediates renal fibrosis via activating fibroblast and promoting epithelial-mesenchymal transition [J]. FASEB J, 2021, 35(3): e21381.
[5]
Gu YY, Dou JY, Huang XR, et al. Transforming growth factor-β and long non-coding RNA in renal inflammation and fibrosis [J]. Front Physiol, 2021, 12: 684236.
[6]
Chaabouni Y, Yaich S, Khedhiri A, et al. Epidemiological profile of terminal chronic renal failure in the region of Sfax [J]. Pan Afr Med J, 2018, 29: 64.
[7]
孟凡航,陈秋源,顾世杰,等. 分泌型Klotho蛋白抑制肾间质纤维化的机制研究[J]. 新医学2021, 52(11): 827-834.
[8]
Aghadavod E, Khodadadi S, Baradaran A, et al. Role of oxidative stress and inflammatory factors in diabetic kidney disease [J]. Iran J Kidney Dis, 2016, 10(6): 337-343.
[9]
张春晶,张越,王小龙,等. 人参皂苷Rh1对UUO大鼠肾纤维化的抑制作用[J]. 中国病理生理杂志2018, 34(12): 2289-2293.
[10]
倪赛宏,傅水莲,何丽明,等. 人参皂苷在肾脏疾病中的药理作用研究进展[J]. 人参研究2018, 30(2): 37-40.
[11]
Zhou X, Sun X, Gong X, et al. Astragaloside IV from Astragalus membranaceus ameliorates renal interstitial fibrosis by inhibiting inflammation via TLR4/NF-кB in vivo and in vitro [J]. Int Immunopharmacol, 2017, 42: 18-24.
[12]
陈素枝,檀金川. 黄芪甲苷保护肾脏的分子机制研究进展[J]. 中草药2018, 49(24): 5973-5979.
[13]
陈维萍,南楚,刘怡伽,等. 黄连素通过调控丝裂原活化蛋白激酶信号通路治疗各科疾病的药理机制研究进展[J]. 环球中医药2023, 16(8): 1707-1714.
[14]
林劲,欧阳辉,梁春玲,等. 白芍总苷对慢性肾小球肾炎模型大鼠的肾脏保护作用及机制研究[J]. 中药新药与临床药理2021, 32(10): 1425-1430.
[1] 邝世航, 黄双艺, 乐有为, 冯建华. 慢性前列腺炎TGF-β1、CTGF的表达水平及其与症状指数的关系[J]. 中华腔镜泌尿外科杂志(电子版), 2018, 12(02): 125-128.
[2] 蒋梦洁, 钱治军, 徐思, 梁伟. 低强度脉冲超声波治疗冻结肩模型兔的实验研究[J]. 中华肩肘外科电子杂志, 2023, 11(01): 30-34.
[3] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[4] 刘一, 文旖旎, 吴映辉. 过敏性紫癜患儿外周血辅助性T细胞、调节性T细胞细胞因子与肾损害的相关性分析[J]. 中华肾病研究电子杂志, 2023, 12(05): 271-275.
[5] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[6] 吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.
[7] 尹丽丽, 管陈, 赵龙, 蒋伟, 秦振志, 李宸羽, 徐岩. 虾青素通过CCN1调节肾间质纤维化的潜在分子作用机制[J]. 中华肾病研究电子杂志, 2022, 11(06): 318-326.
[8] 谭惠丰, 曹沛莲, 张慧, 强胜. Notch信号通路对IgA肾病大鼠外周血Th17细胞数量及功能的影响[J]. 中华肾病研究电子杂志, 2021, 10(05): 259-264.
[9] 史晓蕾, 刘丽华, 卢雪红. 间充质干细胞延缓肾间质纤维化的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(04): 227-231.
[10] 胡天祥, 黄贵锐, 毛炜, 黎创, 徐鹏, 田瑞敏, 谢晨. 基于网络药理学探讨益肾化湿颗粒治疗慢性肾小球肾炎的机制[J]. 中华肾病研究电子杂志, 2021, 10(04): 181-188.
[11] 魏雪娇, 张洋洋, 朱晓宇, 黄秀, 姜丽丽, 赵丹, 龙梦团, 杜玉君. 从细胞角度探讨毛细血管稀疏与肾间质纤维化[J]. 中华肾病研究电子杂志, 2020, 09(03): 124-126.
[12] 冯晓剑, 杨莹, 王利华, 袁瑞霞. Wnt信号调控骨髓源巨噬细胞参与肾脏纤维化的作用及机制[J]. 中华肾病研究电子杂志, 2018, 07(03): 126-130.
[13] 张丽, 乔晞. 烟酰胺腺嘌呤二核苷酸磷酸氧化酶与肾间质纤维化[J]. 中华肾病研究电子杂志, 2018, 07(01): 44-46.
[14] 乔晞, 赵宁, 王利华, 张瑞婧, 韩伟霞. 上调肾组织intermedin表达抑制单侧输尿管梗阻大鼠肾间质纤维化[J]. 中华肾病研究电子杂志, 2015, 04(01): 29-36.
[15] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(09): 972-979.
阅读次数
全文


摘要