切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (06) : 318 -326. doi: 10.3877/cma.j.issn.2095-3216.2022.06.004

论著

虾青素通过CCN1调节肾间质纤维化的潜在分子作用机制
尹丽丽1,(), 管陈2, 赵龙2, 蒋伟2, 秦振志3, 李宸羽4, 徐岩2,()   
  1. 1. 266003 青岛大学附属医院肾内科;261041 潍坊市人民医院血液净化中心
    2. 266003 青岛大学附属医院肾内科
    3. 999077 香港大学李嘉诚医学院
    4. 266003 青岛大学附属医院肾内科;80336 慕尼黑大学附属医院
  • 收稿日期:2021-08-05 出版日期:2022-12-28
  • 通信作者: 尹丽丽, 徐岩
  • 基金资助:
    国家自然科学基金面上项目(81470973,81770679,81970582); 青岛市科技惠民示范引导专项(20-3-4-36-nsh); 潍坊市卫生计生委科研项目计划(wfwsjs-2018-0045)

Potential molecular mechanism of astaxanthin regulating renal interstitial fibrosis through CCN1

Lili Yin1,(), Chen Guan2, Long Zhao2, Wei Jiang2, Zhenzhi Qin3, Chenyu Li4, Yan Xu2,()   

  1. 1. Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Provine, China; Blood Purification Center, Weifang People′s Hospital, Weifang 261041, Shandong Provine, China
    2. Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Provine, China
    3. Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong 999077, China
    4. Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Provine, China; LMU University Hospital, Munich 80336, Germany
  • Received:2021-08-05 Published:2022-12-28
  • Corresponding author: Lili Yin, Yan Xu
引用本文:

尹丽丽, 管陈, 赵龙, 蒋伟, 秦振志, 李宸羽, 徐岩. 虾青素通过CCN1调节肾间质纤维化的潜在分子作用机制[J]. 中华肾病研究电子杂志, 2022, 11(06): 318-326.

Lili Yin, Chen Guan, Long Zhao, Wei Jiang, Zhenzhi Qin, Chenyu Li, Yan Xu. Potential molecular mechanism of astaxanthin regulating renal interstitial fibrosis through CCN1[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(06): 318-326.

目的

探讨虾青素(AST)对肾间质纤维化的潜在分子作用机制,为临床防治肾脏纤维化提供数据。

方法

动物实验采用单侧输尿管结扎(UUO)法建立肾间质纤维化模型。60只雄性C57BL/6小鼠随机分为6组(10只/组):假手术组、假手术+AST(200 mg/kg)组、UUO模型组、UUO+AST(50 mg/kg)组、UUO+AST(100 mg/kg)组、UUO+AST(200 mg/kg)组。细胞实验采用TGF-β1诱导HK-2细胞株上皮间充质转化(EMT)模型。质粒转染实验将HK-2细胞分为7组:对照组、空白组、CCN1过表达组、CCN1敲低组、TGF-β1诱导组、TGF-β1+CCN1过表达组、TGF-β1+CCN1敲低组。AST处理实验将HK-2细胞分为5组:对照组、TGF-β1诱导组、TGF-β1+AST组、TGF-β1+CCN1敲低组、TGF-β1+CCN1敲低+AST组。实时定量荧光PCR法检测肾组织肾损伤生物标志物中性粒细胞明胶酶相关脂质运载蛋白(NGAL)、肾损伤分子-1(KIM-1)、血清胱抑素-C(Cys-C)和白介素-18(IL-18)。Western印迹检测肾组织和细胞的纤维化标志物Ⅰ型胶原蛋白(Col-Ⅰ)、纤连蛋白(FN)、α-平滑肌肌动蛋白(α-SMA)、波形蛋白和E-钙粘蛋白(E-cad),以及TGF-β1/Smad和Notch信号通路分子:pSmad3、Notch1、Notch3、Jagged-1的表达。

结果

与假手术组相比,UUO组小鼠肾损伤生物标志物NGAL、KIM-1、Cys-C和IL-18的水平显著升高;肾脏纤维化标志物蛋白表达水平显著升高,E-cad表达水平显著下降;pSmad3、Notch1、Notch3、Jagged-1的蛋白表达水平显著增加,Smad7表达显著减少。AST处理使肾损伤生物标志物(NGAL、KIM-1、Cys-C和IL-18)、纤维化标志物蛋白表达水平显著下降,E-cad蛋白表达显著上升且呈剂量依赖性。细胞实验结果显示:CCN1过表达可以抑制TGF-β1/Smad和Notch信号通路的激活,而敲低CCN1不仅增强了TGF-β1/Smad和Notch信号通路的激活,还减弱了AST在TGF-β1诱导的EMT模型中的保护作用。

结论

AST可能通过CCN1调节TGF-β1/Smad和Notch信号通路,从而可能具有减轻肾间质纤维化、保护肾脏的作用。

Objective

To explore the potential molecular mechanism of astaxanthin (AST) in renal interstitial fibrosis and provide data for clinical prevention and treatment of renal fibrosis.

Methods

In animal experiment, unilateral ureteral ligation (UUO) was used to establish renal interstitial fibrosis model. 60 male C57BL/6 mice were randomly divided into six groups with 10 mice each, including sham operation group, sham operation+ AST 200mg/kg group, UUO group, UUO+ AST 50, 100, 200 mg/kg groups. In cell experiments, the HK-2 cell line epithelial-mesenchymal transition (EMT) model was induced by TGF-β1. Plasmid transfection experiments divided HK-2 cells into 7 groups: control group, blank group, CCN1 overexpression group, CCN1 knockdown group, TGF-β1 group, TGF-β1+ CCN1 overexpression group, and TGF-β1+ CCN1 knockdown group. The AST treatment experiments divided the HK-2 cells into 5 groups: control group, TGF-β1 group, TGF-β1+ AST group, TGF-β1+ CCN1 knockdown group, and TGF-β1+ CCN1 knockdown+ AST group. Real time-PCR was used to detect the biomarkers of kidney injury in kidney tissue: neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), serum cystatin-C (Cys-C), and interleukin-18 (IL-18). Western blot was used to determine expression of fibrosis markers: type I collagen (Col-Ⅰ), fibronectin (FN), α-smooth muscle actin (α-SMA), vimentin, and E-cadherin (E-cad) in the cells supernatant and kidney tissues, as well as expression of TGF-β1/Smad and Notch signaling pathway molecules including pSmad3, Notch1, Notch3, and Jagged-1.

Results

Compared with the sham operation group, the UUO group showed significant higher levels of kidney injury biomarkers as NGAL, KIM-1, Cys-C, and IL-18. The UUO group also displayed significant higher expression level of renal fibrosis marker proteins as well as lower expression level of E-cad. Besides, in the UUO group, the protein expression levels of pSmad3, Notch1, Notch3, and Jagged-1 also increased significantly, and the expression of Smad7 decreased significantly. AST treatment significantly decreased the expression of biomarkers of renal injury (NGAL, KIM-1, Cys-C and IL-18) and protein expression of fibrosis markers, but increased the expression of E-cad protein in a dose-dependent manner. The cell experiments showed that overexpression of CCN1 inhibited the activation of TGF-β1/Smad and Notch signaling pathways, while knocking down CCN1 not only intensified the activation of TGF-β1/Smad and Notch signaling pathways, but also weakened the protective effect of AST in the EMT model induced by TGF-β1.

Conclusion

AST may regulate TGF-β1/Smad and Notch signaling pathways through CCN1, so as to reduce renal interstitial fibrosis and play a role in renal protection.

图1 各组小鼠肾损伤生物标志物水平注:A:中性粒细胞明胶酶相关脂质运载蛋白(NGAL)mRNA水平比较;B:肾损伤分子-1(KIM-1)mRNA水平比较;C:血清胱抑素-C(Cys-C)mRNA水平比较;D:白介素-18(IL-18)mRNA水平比较;实时定量荧光PCR法检测;与假手术组(Control)相比,aP<0.05;与UUO组相比,bP<0.05
图2 各组小鼠肾纤维化指标比较注:A:Western印迹检测结果;B:Ⅰ型胶原蛋白(Col-Ⅰ)蛋白表达量比较;C:纤连蛋白(FN)蛋白表达量比较;D:α-平滑肌肌动蛋白(α-SMA)蛋白表达量比较;E:波形蛋白(vimentin)蛋白表达量比较;F:E-钙粘蛋白(E-cad)蛋白表达量比较;每组实验均独立重复5次;与假手术组(Control)相比,aP<0.05;与UUO组相比,bP<0.05
图3 各组小鼠TGF-β1/Smad和Notch信号通路蛋白水平比较注:A:Western印迹检测结果;B:转化生长因子-β1(TGF-β1)蛋白表达量比较;C:pSmad3/Smad3蛋白表达量比较;D:Smad7蛋白表达量比较;E:Notch1蛋白表达量比较;F:Notch3蛋白表达量比较;G:Jagged1蛋白表达量比较;每组实验均独立重复5次;与假手术组(Control)相比,aP<0.05;与UUO组相比,bP<0.05
图4 过表达和敲低细胞通信网络因子1对上皮间充质转化模型纤维化指标的影响注:A:Western印迹检测结果;B:Ⅰ型胶原蛋白(Col-Ⅰ)蛋白表达量比较;C:纤连蛋白(FN)蛋白表达量比较;D:α-平滑肌肌动蛋白(α-SMA)蛋白表达量比较;E:波形蛋白(vimentin)蛋白表达量比较;F:E-钙粘蛋白(E-cad)蛋白表达量比较;Control:对照组,Vehicle:空白组,CCN1 OE:CCN1过表达组,CCN1 shRNA:CCN1敲低组,TGF-β1:TGF-β1诱导组,TGF-β1+CCN1 OE:TGF-β1+CCN1过表达组,TGF-β1+CCN1shRNA:TGF-β1+CCN1敲低组;每组实验均独立重复5次;与对照组(Control)相比,aP<0.05;与TGF-β1诱导组相比,bP<0.05
图5 过表达和敲低细胞通信网络因子1对上皮间充质转化模型TGF-β1/Smad和Notch信号通路的影响注:A:Western印迹检测结果;B:转化生长因子-β1(TGF-β1)蛋白表达量比较;C:pSmad3/Smad3蛋白表达量比较;D:Smad7蛋白表达量比较;E:Notch1蛋白表达量比较;F:Notch3蛋白表达量比较;G:Jagged1蛋白表达量比较;Control:对照组,Vehicle:空白组,CCN1 OE:CCN1过表达组,CCN1 shRNA:CCN1敲低组,TGF-β1:TGF-β1诱导组,TGF-β1+CCN1 OE:TGF-β1+CCN1过表达组,TGF-β1+CCN1shRNA:TGF-β1+CCN1敲低组;每组实验均独立重复5次;与对照组(Control)相比,aP<0.05;与TGF-β1诱导组相比,bP<0.05
图6 虾青素对敲低细胞通信网络因子1的上皮间充质转化模型纤维化指标的影响注:A:Western印迹检测结果;B:Ⅰ型胶原蛋白(Col-Ⅰ)蛋白表达量比较;C:纤连蛋白(FN)蛋白表达量比较;D:α-平滑肌肌动蛋白(α-SMA)蛋白表达量比较;E:波形蛋白(vimentin)蛋白表达量比较;F:E-钙粘蛋白(E-cad)蛋白表达量比较;Control:对照组;TGF-β1:TGF-β1诱导组;TGF-β1+AST:TGF-β1+虾青素组;TGF-β1+CCN1 shRNA:TGF-β1+CCN1敲低组;TGF-β1+CCN1 shRNA+AST:TGF-β1+CCN1敲低+虾青素组;每组实验均独立重复5次;与对照组(Control)相比,aP<0.05;与TGF-β1诱导组相比,bP<0.05
图7 虾青素对敲低细胞通信网络因子1的上皮间充质转化模型TGF-β1/Smad和Notch信号通路的影响注:A:Western印迹检测结果;B:转化生长因子-β1(TGF-β1)蛋白表达量比较;C:pSmad3/Smad3蛋白表达量比较;D:Smad7蛋白表达量比较;E:Notch1蛋白表达量比较;F:Notch3蛋白表达量比较;G:Jagged1蛋白表达量比较;Control:对照组;TGF-β1:TGF-β1诱导组;TGF-β1+AST:TGF-β1+虾青素组;TGF-β1+CCN1 shRNA:TGF-β1+CCN1敲低组;TGF-β1+CCN1 shRNA+AST:TGF-β1+CCN1敲低+虾青素组;每组实验均独立重复5次;与对照组(Control)相比,aP<0.05;与TGF-β1诱导组相比,bP<0.05
[1]
Prakoura N, Hadchouel J, Chatziantoniou C. Novel targets for therapy of renal fibrosis [J]. J Histochem Cytochem, 2019, 67(9): 701-715.
[2]
Grzeszkiewicz TM, Kirschling DJ, Chen N, et al. CYR61 stimulates human skin fibroblast migration through Integrin alpha vbeta 5 and enhances mitogenesis through integrin alpha vbeta 3, independent of its carboxyl-terminal domain [J]. J Biol Chem, 2001, 276(24): 21943-21950.
[3]
Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins [J]. Int J Biochem Cell Biol, 2009, 41(4): 771-783.
[4]
Chen CC, Kim KH, Lau LF. The matricellular protein CCN1 suppresses hepatocarcinogenesis by inhibiting compensatory proliferation [J]. Oncogene, 2016, 35(10): 1314-1323.
[5]
Meyer K, Hodwin B, Ramanujam D, et al. Essential role for premature senescence of myofibroblasts in myocardial fibrosis [J]. J Am Coll Cardiol, 2016, 67(17): 2018-2028.
[6]
Liu H, Zhao L, Zhang J, et al. Critical role of cysteine-rich protein 61 in mediating the activation of renal fibroblasts [J]. Front Physiol, 2019, 10(1): 464.
[7]
徐岩,蒋伟,马蕊,等. Cyr61过表达对缺血性急性肾损伤早期细胞凋亡的影响[J]. 中华肾脏病杂志2016, 32(7): 513-518.
[8]
Liu Y, Zhou YD, Xiao YL, et al. Cyr61/CCN1 overexpression induces epithelial-mesenchymal transition leading to laryngeal tumor invasion and metastasis and poor prognosis [J]. Asian Pac J Cancer Prev, 2015, 16(7): 2659-2664.
[9]
Zhou Y, Li H, Liang X, et al. The CCN1 (CYR61) protein promotes skin growth by enhancing epithelial-mesenchymal transition during skin expansion [J]. J Cell Mol Med, 2020, 24(2): 1460-1473.
[10]
Song X, Wang B, Lin S, et al. Astaxanthin inhibits apoptosis in alveolar epithelial cells type II in vivo and in vitro through the ROS-dependent mitochondrial signalling pathway [J]. J Cell Mol Med, 2014, 18(11): 2198-2212.
[11]
Shen M, Chen K, Lu J, et al. Protective effect of astaxanthin on liver fibrosis through modulation of TGF-β1 expression and autophagy [J]. Mediators Inflamm, 2014, 2014: 954502.
[12]
Yang Y, Bae M, Kim B, et al. Astaxanthin prevents and reverses the activation of mouse primary hepatic stellate cells [J]. J Nutr Biochem, 2016, 29(1): 21-26.
[13]
Zhang J, Wang QZ, Zhao SH, et al. Astaxanthin attenuated pressure overload-induced cardiac dysfunction and myocardial fibrosis: partially by activating SIRT-1 [J]. Biochim Biophys Acta Gen Subj, 2017, 1861(7): 1715-1728.
[14]
Chen Y, Li S, Guo Y, et al. Astaxanthin attenuates hypertensive vascular remodeling by protecting vascular smooth muscle cells from oxidative stress-induced mitochondrial dysfunction [J]. Oxid Med Cell Longev, 2020, 2020: 4629189.
[15]
Zhao J, Meng M, Zhang J, et al. Astaxanthin ameliorates renal interstitial fibrosis and peritubular capillary rarefaction in unilateral ureteral obstruction [J]. Mol Med Rep, 2019, 19(4): 3168-3178.
[16]
余美荣,郭松雪,金荣华,等. 虾青素对Ⅲ度烧伤大鼠急性肾损伤的作用及机制[J] . 中华烧伤杂志2020, 36 (11): 1050-1059.
[17]
陈静,李文华,刘娜娜,等. 虾青素对低渗性对比剂诱导的大鼠急性肾损伤的保护作用[J]. 中华肾脏病杂志2015, 31(8): 604-609.
[18]
张成,郑迪,张驰昊,等. 虾青素通过激活SIRT1通路抑制动力相关蛋白1介导的线粒体分裂减轻大鼠对比剂急性肾损伤[J]. 中华肾脏病杂志2022, 38(8): 710-717.
[19]
Chevalier RL, Forbes MS, Thornhill BA. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy [J]. Kidney Int, 2009, 75(11): 1145-1152.
[20]
Wang J, Liu S, Wang H, et al. Xanthophyllomyces dendrorhous-derived astaxanthin regulates lipid metabolism and gut microbiota in obese mice induced by ahigh-fat diet [J]. Mar Drugs, 2019, 17(6): 337.
[21]
Isaka Y. Targeting TGF-β signaling in kidney fibrosis [J]. Int J Mol Sci, 2018, 19(9): 2532.
[22]
Carew RM, Wang B, Kantharidis P. The role of EMT in renal fibrosis [J]. Cell Tissue Res, 2012, 347(1): 103-116.
[23]
Leask A, Abraham DJ. All in the CCN family: essential matricellular signaling modulators emerge from the bunker [J]. J Cell Sci, 2006, 119(Pt 23): 4803-4810.
[24]
Li C, Zhao L, Wang Y, et al. Cysteine-rich protein 61, a specific ultra-early biomarker in kidney ischemia/reperfusion injury [J]. Nephrology (Carlton), 2019, 24(8): 798-805.
[25]
Bartholin L, Wessner LL, Chirgwin JM, et al. The human Cyr61 gene is a transcriptional target of transforming growth factor beta in cancer cells [J]. Cancer Lett, 2007, 246(1-2): 230-236.
[26]
Kurundkar AR, Kurundkar D, Rangarajan S, et al. The matricellular protein CCN1 enhances TGF-β1/SMAD3-dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury [J]. FASEB J, 2016, 30(6): 2135-2150.
[1] 强巴措珍, 刘瀚旻. Notch信号通路在哮喘及T淋巴细胞调节中的作用研究进展[J]. 中华妇幼临床医学杂志(电子版), 2014, 10(02): 249-252.
[2] 蔡维霞, 曹涛, 赵明, 肖丹, 贾艳慧, 王璟, 张月, 王克甲, 韩军涛, 胡大海. Notch信号通路对烧伤大鼠血清诱导的肺血管内皮细胞细胞间黏附分子-1的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 292-299.
[3] 关丽娜, 杨帆, 尹东锋, 杨自更, 魏敦宏, 雒可夫, 王瑞. 低氧环境下Notch信号通路对人牙髓干细胞成牙本质向分化的影响[J]. 中华口腔医学研究杂志(电子版), 2020, 14(04): 214-220.
[4] 邱申彩, 戴晓玮, 龙晏, 陈晓燕, 吴佩玲. 不同浓度γ-分泌酶抑制剂对人牙周膜干细胞骨向分化的影响[J]. 中华口腔医学研究杂志(电子版), 2018, 12(06): 335-341.
[5] 刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.
[6] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[7] 吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.
[8] 谭惠丰, 曹沛莲, 张慧, 强胜. Notch信号通路对IgA肾病大鼠外周血Th17细胞数量及功能的影响[J]. 中华肾病研究电子杂志, 2021, 10(05): 259-264.
[9] 史晓蕾, 刘丽华, 卢雪红. 间充质干细胞延缓肾间质纤维化的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(04): 227-231.
[10] 魏雪娇, 张洋洋, 朱晓宇, 黄秀, 姜丽丽, 赵丹, 龙梦团, 杜玉君. 从细胞角度探讨毛细血管稀疏与肾间质纤维化[J]. 中华肾病研究电子杂志, 2020, 09(03): 124-126.
[11] 张丽, 乔晞. 烟酰胺腺嘌呤二核苷酸磷酸氧化酶与肾间质纤维化[J]. 中华肾病研究电子杂志, 2018, 07(01): 44-46.
[12] 陈昊阳, 王翀. 虾青素对创伤性颅脑损伤保护作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(04): 246-250.
[13] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
阅读次数
全文


摘要