切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (06) : 311 -317. doi: 10.3877/cma.j.issn.2095-3216.2022.06.003

论著

糖尿病肾病维持性血液透析患者低血糖预测模型及评分量表的建立
雷建东1, 吴林军1,(), 季沙1, 蒋志敏1   
  1. 1. 614000 乐山市中医医院检验科
  • 收稿日期:2021-12-16 出版日期:2022-12-28
  • 通信作者: 吴林军

Establishment of predictive model and score scale for hypoglycemia in maintenance hemodialysis patients with diabetic nephropathy

Jiandong Lei1, Linjun Wu1,(), Sha Ji1, Zhimin Jiang1   

  1. 1. Department of Clinical Laboratory, Leshan Hospital of Traditional Chinese Medicine, Leshan 614000, Sichuan Province, China
  • Received:2021-12-16 Published:2022-12-28
  • Corresponding author: Linjun Wu
引用本文:

雷建东, 吴林军, 季沙, 蒋志敏. 糖尿病肾病维持性血液透析患者低血糖预测模型及评分量表的建立[J/OL]. 中华肾病研究电子杂志, 2022, 11(06): 311-317.

Jiandong Lei, Linjun Wu, Sha Ji, Zhimin Jiang. Establishment of predictive model and score scale for hypoglycemia in maintenance hemodialysis patients with diabetic nephropathy[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(06): 311-317.

目的

探讨糖尿病肾病(DN)患者血液透析(HD)过程中发生低血糖的影响因素,建立低血糖预测模型及评分表。

方法

选取2019年2月至2021年7月于我院血液透析中心进行维持性HD的DN患者242例,根据患者HD过程中是否发生低血糖分为未发生低血糖组(n=112)和发生低血糖组(n=130),通过问卷调查收集患者临床资料,采用单因素Logistic分析及Lasso-Logistic回归分析筛选相关变量,以是否发生低血糖为因变量建立Logistic回归模型与评分表,采用受试者工作特征曲线(ROC)和校准曲线验证模型的区分度和准确度。

结果

两组DN患者年龄、身体质量指数(BMI)、用药依从性、血糖平均值(MBG)、血糖变异系数(CVBG)、每日运动时间、合理控制饮食、抑郁状态及照顾能力比较,差异均具有统计学意义(P<0.05)。单因素Logistic回归分析结果显示,年龄、BMI、MBG、CVBG、用药依从性、每日运动时间、合理控制饮食、抑郁状态及照顾能力均为DN患者HD过程中发生低血糖的影响因素(P<0.05)。Lasso-Logistic回归分析结果亦显示,MBG、CVBG、用药依从性、合理控制饮食、抑郁状态及照顾能力是患者发生低血糖的影响因素(P<0.05)。构建的Logistic风险预测模型的ROC曲线AUC 0.826,95%CI:0.785~0.897,校准图显示该模型预测值与实际观测值较为一致。根据建立的低血糖预测评分表,0~9分对应的低血糖发生概率为7.3%~100.0%。最大约登指数为0.49时评分表切点为5分,该分值下评分表的灵敏度为83.61%、特异度为85.83%、准确率为84.71%。

结论

基于Lasso-Logistic回归模型开发的低血糖评分量表联合MBG、CVBG、用药依从性、合理控制饮食、抑郁状态、照顾能力对DN患者HD过程中低血糖做出可靠预测,为患者临床治疗过程中血糖控制提供依据,具有一定的临床应用价值。

Objective

To investigate the influencing factors of hypoglycemia during hemodialysis (HD) in patients with diabetic nephropathy (DN), and establish a predictive model and scoring system for hypoglycemia.

Methods

242 DN patients who underwent maintenance hemodialysis (HD) in the hemodialysis center of our hospital from February 2019 to July 2021 were selected. According to whether hypoglycemia occurred during HD, they were divided into non-hypoglycemia group (n= 112) and hypoglycemia group (n= 130). The clinical data of patients were collected through questionnaire survey, and the relevant variables were screened by single factor logistic analysis and Lasso-Logistic regression analysis. The logistic regression model and scoring table were established with hypoglycemia as the dependent variable. The discrimination and accuracy of the model were verified by receiver operating characteristic (ROC) curve and calibration curve.

Results

There were significant differences in age, body mass index (BMI), medication compliance, mean blood glucose (MBG), coefficient of variation of blood glucose (CVBG), daily exercise time, reasonable diet control, depression, and care ability between the two groups (P< 0.05). Univariate logistic regression analysis showed that age, BMI, MBG, CVBG, medication compliance, daily exercise time, reasonable diet control, depression, and care ability were the influencing factors of hypoglycemia in patients with DN during HD (P< 0.05). Lasso-Logistic regression analysis showed that MBG, CVBG, medication compliance, reasonable diet control, depression, and care ability were also the influencing factors of hypoglycemia in maintenance HD patients with DN (P< 0.05). The AUC of ROC curve of the constructed logistic risk prediction model was 0.826, and the 95%CI was 0.785-0.897, and the calibration chart showed that the predicted value of the model was consistent with the actual value observed. According to the prediction score table constructed, the occurrence probability of hypoglycemia corresponding to 0-9 points was 7.3%-100.0%. When the maximum Yoden index was 0.49, the cut-off point of the scoring table was 5 points. Under this score, the sensitivity, specificity, and accuracy of the scoring table were 83.61%, 85.83%, and 84.71%, respectively.

Conclusion

The hypoglycemia score scale developed based on Lasso-Logistic regression model combined with MBG, CVBG, medication compliance, reasonable diet control, depression and, care ability could reliably predict hypoglycemia in patients with DN during HD, which may provide basis for blood glucose control during clinical treatment, and have certain clinical application value.

表1 两组糖尿病肾病患者基本资料比较
项目 未发生低血糖组(n=112) 发生低血糖组(n=130) 统计值 P
年龄 61.42±11.15 70.52±10.74 6.457 <0.001
男性[例(%)] 64(57.14) 71(54.62) 0.171 0.679
BMI(kg/m2) 21.95±2.67 20.04±2.84 5.363 <0.001
糖尿病病程(年) 20.00(11.75,22.25) 21.00(15.25,29.50) -1.645 0.100
糖尿病家族史[例(%)] 35(31.25) 46(35.38) 0.170 0.671
DN病程(年) 5.00(3.00,10.00) 3.00(2.00,6.00) -1.833 0.067
胰岛素总剂量(U) 26.00(18.00,35.00) 29.00(18.50,37.00) -0.323 0.747
透析龄(月) 30.00(12.75,48.00) 30.50(8.25,54.50) -0.006 0.995
TC(mmol/L) 4.97±0.88 5.10±0.93 1.680 0.095
TG(mmol/L) 2.53±0.61 2.62±0.68 0.987 0.325
HDL-C(mmol/L) 2.65±0.70 2.79±0.76 0.539 0.591
LDL-C(mmol/L) 1.42±0.35 0.57±0.10 0.396 0.693
BUN (mmoI/L) 28.12±5.31 28.34±5.35 0.476 0.634
Scr (μmoI/L) 350.28±36.97 351.46±37.85 0.694 0.489
SUA(μmoI/L) 391.15±87.23 386.26±93.45 0.334 0.739
Hb(g/L) 90.82±17.89 81.74±25.33 1.680 0.193
Alb(g/L) 32.26±5.81 33.62±5.59 1.165 0.246
UAER(μg /min) 60.05±11.48 60.73±12.27 0.398 0.691
HD方式[例(%)]     3.860 0.052
  高通量 65(58.04) 91(70.00)    
  低通量 47(41.96) 39(30.00)    
用药依从性[例(%)]     20.776 <0.001
  84(75.00) 60(46.15)    
  一般或差 28(25.00) 70(53.85)    
MBG(mmol/L) 9.30(7.70,11.40) 7.40(6.70,8.30) 13.440 <0.001
CVBG 0.20(0.10,0.30) 0.30(0.20,0.40) 9.521 0.009
每日运动时间[例(%)]     4.690 0.030
  <0.5 h 30(26.79) 52(40.00)    
  ≥0.5 h 82(73.21) 78(60.00)    
合理控制饮食[例(%)]     11.235 <0.001
  99(88.39) 92(70.77)    
  13(11.61) 38(29.23)    
睡眠状况[例(%)]     0.134 0.715
  良好 50(44.64) 55(42.31)    
  一般或较差 62(55.36) 75(57.69)    
抑郁状态[例(%)]     8.553 0.004
  无或轻度 71(63.39) 58(44.62)    
  中度或重度 41(36.61) 72(55.38)    
照顾能力[例(%)]     17.948 <0.001
  84(75.00) 61(46.92)    
  一般或差 28(25.00) 69(53.08)    
降糖药物使用[例(%)]     2.447 0.118
  α糖苷酶抑制剂 61(54.46) 74(56.92)    
  β受体阻滞剂 25(22.32) 32(24.62)    
  水杨酸类药物 26(23.22) 24(18.46)    
表2 糖尿病肾病患者透析过程中发生低血糖的Logistic回归分析
图1 回归模型ROC曲线
图2 回归模型校准曲线
表3 基于多因素Logistic回归构建低血糖预测评分表
表4 切点为5分时的混淆矩阵
图3 评分-低血糖实际发生概率对照图
[1]
Wang Y, Zhou T, Zhang Q, et al. Poor renal and cardiovascular outcomes in patients with biopsy-proven diabetic nephropathy [J]. Kidney Blood Press Res, 2020, 45(3): 378-390.
[2]
Wang H, Yuan M, Zou X. Efficacy and safety of Ginkgo biloba for patients with early diabetic nephropathy: a protocol for systematic review and meta-analysis [J]. Medicine (Baltimore), 2020, 99(35): e21959.
[3]
Chen XX, Duan Y, Zhou Y. Effects of hemodialysis and peritoneal dialysis on glycometabolism in patients with end-stage diabetic nephropathy [J]. Blood Purif, 2021, 50(4-5): 506-512.
[4]
Liao LN, Li TC, Li CI, et al. Genetic risk score for risk prediction of diabetic nephropathy in Han Chinese type 2 diabetes patients [J]. Sci Rep, 2019, 9(1): 19897.
[5]
Xia J, Zhang L, Zhang X, et al. Effect of large dosage of Fuling on urinary protein of diabetic nephropathy: a protocol of systematic review and meta-analysis of randomized clinical trials [J]. Medicine (Baltimore), 2020, 99(40): e22377.
[6]
中华医学会内分泌学分会. 中国成人糖尿病肾脏病临床诊断的专家共识[J]. 中华内分泌代谢杂志2015, 31(5): 379-385.
[7]
Morisky DE, Ang A, Krousel-Wood M, et al. Predictive validity of a medication adherence measure in an outpatient setting [J]. J Clin Hypertens, 2008, 10(5): 348-354.
[8]
中华医学会糖尿病学分会,中国医师协会营养医师专业委员会. 中国糖尿病医学营养治疗指南(2013)[J]. 中华糖尿病杂志2015, 7(2): 73-88.
[9]
Pataka A, Kalamaras G, Daskalopoulou E, et al. Sleep questionnaires for the screening of obstructive sleep apnea in patients with type 2 diabetes mellitus compared with non-diabetic patients [J]. J Diabetes Res, 2019, 11(3): 214-222.
[10]
吴金凤,吴夏鑫,李双,等. 2型糖尿病患者焦虑、抑郁与血糖控制的关联及其临床护理 [J]. 实用临床医药杂志2019, 23(6): 62-65.
[11]
楼玮群,梅锦荣. 长者身心健康测量手册[M]. 香港:香港的大学秀圃老年研究中心,2008: 180-184.
[12]
李雪莹,李小寒. 沈阳市社区2型糖尿病患者自我管理能力与生活质量的相关性研究[J].中国医科大学学报2019, 48(4): 333-337.
[13]
年素娟,李惠莉,李儿,等. 糖尿病血液透析患者透析过程中低血糖发生情况及其影响因素研究[J]. 中国全科医学2021, 24(15): 1889-1896.
[14]
Chu YW, Lin HM, Wang JJ, et al. Epidemiology and outcomes of hypoglycemia in patients with advanced diabetic kidney disease on dialysis: a national cohort study [J]. PLoS One, 2017, 12(3): e0174601.
[15]
周雨婷,蔡小霞,林亚妹,等. 糖尿病肾病维持性血液透析患者低血糖发生机制及预防研究进展[J]. 医学综述2020, 26(6): 1183-1187.
[16]
Jensen MH, Dethlefsen C, Hejlesen O, et al. Association of severe hypoglycemia with mortality for people with diabetes mellitus during a 20-year follow-up in Denmark: a cohort study [J]. Acta Diabetol, 2020, 57(5): 549-558.
[17]
Khanimov I, Segal G, Wainstein J, et al. High-intensity statins are associated with increased incidence of hypoglycemia during hospitalization of individuals not critically ill [J]. Am J Med, 2019, 132(11): 1305-1310.
[18]
覃伟,高敏,沈莹,等. 基于机器学习算法的2型糖尿病患者3个月血糖预测[J]. 中华疾病控制杂志2019, 23(11): 1313-1317.
[19]
Silverii GA, Botarelli L, Dicembrini I, et al. Low-carbohydrate diets and type 2 diabetes treatment: a meta-analysis of randomized controlled trials [J]. Acta Diabetol, 2020, 57(11): 1375-1382.
[20]
杨恒博,袁蓉,石霞,等. 老年2型糖尿病患者糖化血红蛋白预测模型的建立与评分表的开发[J]. 中国全科医学2021, 24(14): 1841-1847.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[3] 李霞林, 贺芳. 产后出血风险评估和早期预警系统[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 498-503.
[4] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[5] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[6] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[7] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[8] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[9] 张少青, 吕玉风, 董海霞. 中性粒细胞百分比/白蛋白比值对维持性血液透析患者全因死亡的预测作用[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 321-326.
[10] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[11] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[12] 广东省护士协会介入护士分会, 广东省医师协会介入医师分会. 原发性肝癌低血糖患者护理规范管理专家共识[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 709-714.
[13] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[14] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[15] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?