切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (04) : 227 -231. doi: 10.3877/cma.j.issn.2095-3216.2021.04.008

综述

间充质干细胞延缓肾间质纤维化的研究进展
史晓蕾1, 刘丽华1, 卢雪红1,()   
  1. 1. 130000 吉林大学第二医院肾内科
  • 收稿日期:2021-01-13 出版日期:2021-08-26
  • 通信作者: 卢雪红
  • 基金资助:
    吉林省卫生与健康技术创新项目(2020J037)

Research progress of mesenchymal stem cells in delaying renal interstitial fibrosis

Xiaolei Shi1, Lihua Liu1, Xuehong Lu1,()   

  1. 1. Department of Nephrology, Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
  • Received:2021-01-13 Published:2021-08-26
  • Corresponding author: Xuehong Lu
引用本文:

史晓蕾, 刘丽华, 卢雪红. 间充质干细胞延缓肾间质纤维化的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(04): 227-231.

Xiaolei Shi, Lihua Liu, Xuehong Lu. Research progress of mesenchymal stem cells in delaying renal interstitial fibrosis[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(04): 227-231.

慢性肾脏病(CKD)在世界范围内患病率为8%~16%。肾间质纤维化是CKD进展的主要途径,最终发展为终末期肾脏病(ESRD),造成巨大的社会经济负担。近几年,间充质干细胞(MSCs)因其多向分化和自我更新能力在修复损伤中显示出巨大潜力。最新研究发现,MSCs可以通过调节免疫应答和旁分泌作用调节肾间质纤维化相关信号通路,抑制肾小管上皮-间充质转化(EMT),从而延缓肾间质纤维化。本文从间充质干细胞延缓肾间质纤维化的机制、相关研究和存在的挑战等方面进行了综述。

Chronic kidney disease (CKD) has a worldwide prevalence of 8%-16%. Renal interstitial fibrosis is the main route of CKD progression, and eventually inevitably develops into end-stage renal disease (ESRD), causing a huge socioeconomic burden. In recent years, mesenchymal stem cells (MSCs) have shown great potential in repairing injury by their multi-directional differentiation and self-renewal ability. Recent studies have found that MSCs can regulate renal interstitial fibrosis-related signaling pathways through the immune response and paracrine effects, inhibit tubular epithelial-mesenchymal transition (EMT), and thereby delay renal interstitial fibrosis. This article reviewed the mechanism, related researches, and existing challenges of MSCs in delaying renal interstitial fibrosis.

表1 MSCs在不同肾间质纤维化模型中的作用
[1]
Ishiuchi N, Nakashima A, Doi S, et al. Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats [J]. Stem Cell Res Ther, 2020, 11(1): 130.
[2]
Humphreys BD. Mechanisms of renal fibrosis [J]. Annu Rev Physiol, 2018, 80: 309-326.
[3]
Zhuang Q, Ma R, Yin Y, et al. Mesenchymal stem cells in renal fibrosis: the flame of cytotherapy [J]. Stem Cells Int, 2019, 2019: 8387350.
[4]
Lin S, Yu L, Ni Y, et al. Fibroblast growth factor 21 attenuates diabetes-induced renal fibrosis by negatively regulating TGF-β-p53-Smad2/3-mediated epithelial-to-mesenchymal transition via activation of AKT [J]. Diabetes Metab J, 2020, 44(1): 158-172.
[5]
Xie M, Wan J, Zhang F, et al. Influence of hepatocyte growth factor-transfected bone marrow-derived mesenchymal stem cells towards renal fibrosis in rats [J]. Indian J Med Res, 2019, 149(4): 508-516.
[6]
Lee M, Kim SH, Jhee JH, et al. Microparticles derived from human erythropoietin mRNA-transfected mesenchymal stem cells inhibit epithelial-to-mesenchymal transition and ameliorate renal interstitial fibrosis [J]. Stem Cell Res Ther, 2020, 11(1): 422.
[7]
Yu P, Wang Z, Liu Y, et al. Marrow mesenchymal stem cells effectively reduce histologic changes in a rat model of chronic renal allograft rejection [J]. Transplant Proc, 2017, 49(9): 2194-2203.
[8]
Brennan Má, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration [J]. Adv Funct Mater, 2020, 30(37): 1909125.
[9]
Yun CW, Lee SH. Potential and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for acute/chronic kidney disease [J]. Int J Mol Sci, 2019, 20(7): 1619.
[10]
Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: cell therapy and regeneration potential [J]. J Tissue Eng Regen Med, 2019, 13(9): 1738-1755.
[11]
Kim SR, Zou X, Tang H, et al. Increased cellular senescence in the murine and human stenotic kidney: effect of mesenchymal stem cells [J]. J Cell Physiol, 2021, 236(2): 1332-1344.
[12]
Gewin LS. Renal fibrosis: primacy of the proximal tubule [J]. Matrix Biol, 2018, 68-69: 248-262.
[13]
Makhlough A, Shekarchian S, Moghadasali R, et al. Bone marrow-mesenchymal stromal cell infusion in patients with chronic kidney disease: a safety study with 18 months of follow-up [J]. Cytotherapy, 2018, 20(5): 660-669.
[14]
Li M, Jiang T, Zhang W, et al. Human umbilical cord MSC-derived hepatocyte growth factor enhances autophagy in AOPP-treated HK-2 cells [J]. Exp Ther Med, 2020, 20(3): 2765-2773.
[15]
Yoshida K, Nakashima A, Doi S, et al. Serum-free medium enhances the immunosuppressive and antifibrotic abilities of mesenchymal stem cells utilized in experimental renal fibrosis [J]. Stem Cells Transl Med, 2018, 7(12): 893-905.
[16]
Kim HS, Lee JS, Lee HK, et al. Mesenchymal stem cells ameliorate renal inflammation in adriamycin-induced nephropathy [J]. Immune Netw, 2019, 19(5): e36.
[17]
Song Y, Lv S, Wang F, et al. Overexpression of BMP-7 reverses TGF-beta 1-induced epithelial-mesenchymal transition by attenuating the Wnt3/beta-catenin and TGF-beta 1/Smad2/3 signaling pathways in HK-2 cells [J]. Mol Med Rep, 2020, 21(2): 833-841.
[18]
Chen L, Yang T, Lu DW, et al. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment [J]. Biomed Pharmacother, 2018, 101: 670-681.
[19]
Marcheque J, Bussolati B, Csete M, et al. Concise reviews: stem cells and kidney regeneration: an update [J]. Stem Cells Transl Med, 2018, 8(1): 82-92.
[20]
Li C, Xiao Q, Gu C, et al. Hepatocyte growth factor inhibits renal angiotensin II expression in 5/6 nephrectomized rats [J]. Ann Clin Lab Sci, 2020, 50(5): 578-583.
[21]
Lv W, Booz GW, Wang Y, et al. Inflammation and renal fibrosis: recent developments on key signaling molecules as potential therapeutic targets [J]. Eur J Pharmacol, 2018, 820: 65-76.
[22]
Chang JW, Tsai HL, Chen CW, et al. Conditioned mesenchymal stem cells attenuate progression of chronic kidney disease through inhibition of epithelial-to-mesenchymal transition and immune modulation [J]. J Cell Mol Med, 2012, 16(12): 2935-2949.
[23]
Katsuno T, Ozaki T, Saka Y, et al. Low serum cultured adipose tissue-derived stromal cells ameliorate acute kidney injury in rats [J]. Cell Transplant, 2013, 22(2): 287-297.
[24]
Wiklander OPB, Brennan Má, Lotvall J, et al. Advances in therapeutic applications of extracellular vesicles [J]. Sci Transl Med, 2019, 11(492): eaav8521.
[25]
Fan M, Zhang J, Xin H, et al. Current perspectives on role of MSC in renal pathophysiology [J]. Front Physiol, 2018, 9: 1323.
[26]
Grange C, Tritta S, Tapparo M, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy [J]. Sci Rep, 2019, 9(1): 4468.
[27]
Shi Z, Wang Q, Zhang Y, et al. Extracellular vesicles produced by bone marrow mesenchymal stem cells attenuate renal fibrosis, in part by inhibiting the RhoA/ROCK pathway, in a UUO rat model [J]. Stem Cell Res Ther, 2020, 11(1): 253.
[28]
Wang Y, Guo YF, Fu GP, et al. Protective effect of miRNA-containing extracellular vesicles derived from mesenchymal stromal cells of old rats on renal function in chronic kidney disease [J]. Stem Cell Res Ther, 2020, 11(1): 274.
[29]
Zhao M, Liu S, Wang C, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA [J]. ACS Nano, 2021, 15(1): 1519-1538.
[30]
Liu Y, Cui J, Wang H, et al. Enhanced therapeutic effects of MSC-derived extracellular vesicles with an injectable collagen matrix for experimental acute kidney injury treatment [J]. Stem Cell Res Ther, 2020, 11(1): 161.
[31]
da Silva AF, Silva K, Reis LA, et al. Bone marrow-derived mesenchymal stem cells and their conditioned medium attenuate fibrosis in an irreversible model of unilateral ureteral obstruction [J]. Cell Transplant, 2015, 24(12): 2657-2666.
[32]
Xiang E, Han B, Zhang Q, et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis [J]. Stem Cell Res Ther, 2020, 11(1): 336.
[33]
Baulier E, Favreau F, Le Corf A, et al. Amniotic fluid-derived mesenchymal stem cells prevent fibrosis and preserve renal function in a preclinical porcine model of kidney transplantation [J]. Stem Cells Transl Med, 2014, 3(7): 809-820.
[34]
Maruyama T, Fukuda N, Matsumoto T, et al. Systematic implantation of dedifferentiated fat cells ameliorated monoclonal antibody 1-22-3-induced glomerulonephritis by immunosuppression with increases in TNF-stimulated gene 6 [J]. Stem Cell Res Ther, 2015, 6(1): 80.
[35]
Franquesa M, Herrero E, Torras J, et al. Mesenchymal stem cell therapy prevents interstitial fibrosis and tubular atrophy in a rat kidney allograft model [J]. Stem Cells Dev, 2012, 21(17): 3125-3135.
[36]
Moghadasali R, Hajinasrollah M, Argani H, et al. Autologous transplantation of mesenchymal stromal cells tends to prevent progress of interstitial fibrosis in a rhesus Macaca mulatta monkey model of chronic kidney disease [J]. Cytotherapy, 2015, 17(11): 1495-1505.
[37]
Lohmann S, Eijken M, Møldrup U, et al. Ex vivo administration of mesenchymal stromal cells in kidney grafts against ischemia reperfusion injury-effective delivery without kidney function improvement posttransplant [J]. Transplantation, 2020: 105(3): 517-528.
[38]
Reinders ME, de Fijter JW, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study [J]. Stem Cells Transl Med, 2013, 2(2): 107-111.
[39]
Kim JS, Lee JH, Kwon O, et al. Rapid deterioration of preexisting renal insufficiency after autologous mesenchymal stem cell therapy [J]. Kidney Res Clin Pract, 2017, 36(2): 200-204.
[40]
Ullah M, Liu DD, Rai S, et al. Pulsed focused ultrasound enhances the therapeutic effect of mesenchymal stromal cell-derived extracellular vesicles in acute kidney injury [J]. Stem Cell Res Ther, 2020, 11(1): 398.
[1] 沈纵, 魏晨如, 朱邦晖, 包郁露, 伍国胜, 孙瑜. 间充质干细胞治疗吸入性损伤的动物实验研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 180-183.
[2] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[3] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[4] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[5] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[6] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[7] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[8] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[9] 陈玉婷, 周影, 陆雅斐, 江滨. 缺氧预处理间充质干细胞的功能及机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 115-120.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[12] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[13] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[14] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要