切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (04) : 227 -231. doi: 10.3877/cma.j.issn.2095-3216.2021.04.008

综述

间充质干细胞延缓肾间质纤维化的研究进展
史晓蕾1, 刘丽华1, 卢雪红1,()   
  1. 1. 130000 吉林大学第二医院肾内科
  • 收稿日期:2021-01-13 出版日期:2021-08-26
  • 通信作者: 卢雪红
  • 基金资助:
    吉林省卫生与健康技术创新项目(2020J037)

Research progress of mesenchymal stem cells in delaying renal interstitial fibrosis

Xiaolei Shi1, Lihua Liu1, Xuehong Lu1,()   

  1. 1. Department of Nephrology, Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
  • Received:2021-01-13 Published:2021-08-26
  • Corresponding author: Xuehong Lu
引用本文:

史晓蕾, 刘丽华, 卢雪红. 间充质干细胞延缓肾间质纤维化的研究进展[J/OL]. 中华肾病研究电子杂志, 2021, 10(04): 227-231.

Xiaolei Shi, Lihua Liu, Xuehong Lu. Research progress of mesenchymal stem cells in delaying renal interstitial fibrosis[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(04): 227-231.

慢性肾脏病(CKD)在世界范围内患病率为8%~16%。肾间质纤维化是CKD进展的主要途径,最终发展为终末期肾脏病(ESRD),造成巨大的社会经济负担。近几年,间充质干细胞(MSCs)因其多向分化和自我更新能力在修复损伤中显示出巨大潜力。最新研究发现,MSCs可以通过调节免疫应答和旁分泌作用调节肾间质纤维化相关信号通路,抑制肾小管上皮-间充质转化(EMT),从而延缓肾间质纤维化。本文从间充质干细胞延缓肾间质纤维化的机制、相关研究和存在的挑战等方面进行了综述。

Chronic kidney disease (CKD) has a worldwide prevalence of 8%-16%. Renal interstitial fibrosis is the main route of CKD progression, and eventually inevitably develops into end-stage renal disease (ESRD), causing a huge socioeconomic burden. In recent years, mesenchymal stem cells (MSCs) have shown great potential in repairing injury by their multi-directional differentiation and self-renewal ability. Recent studies have found that MSCs can regulate renal interstitial fibrosis-related signaling pathways through the immune response and paracrine effects, inhibit tubular epithelial-mesenchymal transition (EMT), and thereby delay renal interstitial fibrosis. This article reviewed the mechanism, related researches, and existing challenges of MSCs in delaying renal interstitial fibrosis.

表1 MSCs在不同肾间质纤维化模型中的作用
[1]
Ishiuchi N, Nakashima A, Doi S, et al. Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats [J]. Stem Cell Res Ther, 2020, 11(1): 130.
[2]
Humphreys BD. Mechanisms of renal fibrosis [J]. Annu Rev Physiol, 2018, 80: 309-326.
[3]
Zhuang Q, Ma R, Yin Y, et al. Mesenchymal stem cells in renal fibrosis: the flame of cytotherapy [J]. Stem Cells Int, 2019, 2019: 8387350.
[4]
Lin S, Yu L, Ni Y, et al. Fibroblast growth factor 21 attenuates diabetes-induced renal fibrosis by negatively regulating TGF-β-p53-Smad2/3-mediated epithelial-to-mesenchymal transition via activation of AKT [J]. Diabetes Metab J, 2020, 44(1): 158-172.
[5]
Xie M, Wan J, Zhang F, et al. Influence of hepatocyte growth factor-transfected bone marrow-derived mesenchymal stem cells towards renal fibrosis in rats [J]. Indian J Med Res, 2019, 149(4): 508-516.
[6]
Lee M, Kim SH, Jhee JH, et al. Microparticles derived from human erythropoietin mRNA-transfected mesenchymal stem cells inhibit epithelial-to-mesenchymal transition and ameliorate renal interstitial fibrosis [J]. Stem Cell Res Ther, 2020, 11(1): 422.
[7]
Yu P, Wang Z, Liu Y, et al. Marrow mesenchymal stem cells effectively reduce histologic changes in a rat model of chronic renal allograft rejection [J]. Transplant Proc, 2017, 49(9): 2194-2203.
[8]
Brennan Má, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration [J]. Adv Funct Mater, 2020, 30(37): 1909125.
[9]
Yun CW, Lee SH. Potential and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for acute/chronic kidney disease [J]. Int J Mol Sci, 2019, 20(7): 1619.
[10]
Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: cell therapy and regeneration potential [J]. J Tissue Eng Regen Med, 2019, 13(9): 1738-1755.
[11]
Kim SR, Zou X, Tang H, et al. Increased cellular senescence in the murine and human stenotic kidney: effect of mesenchymal stem cells [J]. J Cell Physiol, 2021, 236(2): 1332-1344.
[12]
Gewin LS. Renal fibrosis: primacy of the proximal tubule [J]. Matrix Biol, 2018, 68-69: 248-262.
[13]
Makhlough A, Shekarchian S, Moghadasali R, et al. Bone marrow-mesenchymal stromal cell infusion in patients with chronic kidney disease: a safety study with 18 months of follow-up [J]. Cytotherapy, 2018, 20(5): 660-669.
[14]
Li M, Jiang T, Zhang W, et al. Human umbilical cord MSC-derived hepatocyte growth factor enhances autophagy in AOPP-treated HK-2 cells [J]. Exp Ther Med, 2020, 20(3): 2765-2773.
[15]
Yoshida K, Nakashima A, Doi S, et al. Serum-free medium enhances the immunosuppressive and antifibrotic abilities of mesenchymal stem cells utilized in experimental renal fibrosis [J]. Stem Cells Transl Med, 2018, 7(12): 893-905.
[16]
Kim HS, Lee JS, Lee HK, et al. Mesenchymal stem cells ameliorate renal inflammation in adriamycin-induced nephropathy [J]. Immune Netw, 2019, 19(5): e36.
[17]
Song Y, Lv S, Wang F, et al. Overexpression of BMP-7 reverses TGF-beta 1-induced epithelial-mesenchymal transition by attenuating the Wnt3/beta-catenin and TGF-beta 1/Smad2/3 signaling pathways in HK-2 cells [J]. Mol Med Rep, 2020, 21(2): 833-841.
[18]
Chen L, Yang T, Lu DW, et al. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment [J]. Biomed Pharmacother, 2018, 101: 670-681.
[19]
Marcheque J, Bussolati B, Csete M, et al. Concise reviews: stem cells and kidney regeneration: an update [J]. Stem Cells Transl Med, 2018, 8(1): 82-92.
[20]
Li C, Xiao Q, Gu C, et al. Hepatocyte growth factor inhibits renal angiotensin II expression in 5/6 nephrectomized rats [J]. Ann Clin Lab Sci, 2020, 50(5): 578-583.
[21]
Lv W, Booz GW, Wang Y, et al. Inflammation and renal fibrosis: recent developments on key signaling molecules as potential therapeutic targets [J]. Eur J Pharmacol, 2018, 820: 65-76.
[22]
Chang JW, Tsai HL, Chen CW, et al. Conditioned mesenchymal stem cells attenuate progression of chronic kidney disease through inhibition of epithelial-to-mesenchymal transition and immune modulation [J]. J Cell Mol Med, 2012, 16(12): 2935-2949.
[23]
Katsuno T, Ozaki T, Saka Y, et al. Low serum cultured adipose tissue-derived stromal cells ameliorate acute kidney injury in rats [J]. Cell Transplant, 2013, 22(2): 287-297.
[24]
Wiklander OPB, Brennan Má, Lotvall J, et al. Advances in therapeutic applications of extracellular vesicles [J]. Sci Transl Med, 2019, 11(492): eaav8521.
[25]
Fan M, Zhang J, Xin H, et al. Current perspectives on role of MSC in renal pathophysiology [J]. Front Physiol, 2018, 9: 1323.
[26]
Grange C, Tritta S, Tapparo M, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy [J]. Sci Rep, 2019, 9(1): 4468.
[27]
Shi Z, Wang Q, Zhang Y, et al. Extracellular vesicles produced by bone marrow mesenchymal stem cells attenuate renal fibrosis, in part by inhibiting the RhoA/ROCK pathway, in a UUO rat model [J]. Stem Cell Res Ther, 2020, 11(1): 253.
[28]
Wang Y, Guo YF, Fu GP, et al. Protective effect of miRNA-containing extracellular vesicles derived from mesenchymal stromal cells of old rats on renal function in chronic kidney disease [J]. Stem Cell Res Ther, 2020, 11(1): 274.
[29]
Zhao M, Liu S, Wang C, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA [J]. ACS Nano, 2021, 15(1): 1519-1538.
[30]
Liu Y, Cui J, Wang H, et al. Enhanced therapeutic effects of MSC-derived extracellular vesicles with an injectable collagen matrix for experimental acute kidney injury treatment [J]. Stem Cell Res Ther, 2020, 11(1): 161.
[31]
da Silva AF, Silva K, Reis LA, et al. Bone marrow-derived mesenchymal stem cells and their conditioned medium attenuate fibrosis in an irreversible model of unilateral ureteral obstruction [J]. Cell Transplant, 2015, 24(12): 2657-2666.
[32]
Xiang E, Han B, Zhang Q, et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis [J]. Stem Cell Res Ther, 2020, 11(1): 336.
[33]
Baulier E, Favreau F, Le Corf A, et al. Amniotic fluid-derived mesenchymal stem cells prevent fibrosis and preserve renal function in a preclinical porcine model of kidney transplantation [J]. Stem Cells Transl Med, 2014, 3(7): 809-820.
[34]
Maruyama T, Fukuda N, Matsumoto T, et al. Systematic implantation of dedifferentiated fat cells ameliorated monoclonal antibody 1-22-3-induced glomerulonephritis by immunosuppression with increases in TNF-stimulated gene 6 [J]. Stem Cell Res Ther, 2015, 6(1): 80.
[35]
Franquesa M, Herrero E, Torras J, et al. Mesenchymal stem cell therapy prevents interstitial fibrosis and tubular atrophy in a rat kidney allograft model [J]. Stem Cells Dev, 2012, 21(17): 3125-3135.
[36]
Moghadasali R, Hajinasrollah M, Argani H, et al. Autologous transplantation of mesenchymal stromal cells tends to prevent progress of interstitial fibrosis in a rhesus Macaca mulatta monkey model of chronic kidney disease [J]. Cytotherapy, 2015, 17(11): 1495-1505.
[37]
Lohmann S, Eijken M, Møldrup U, et al. Ex vivo administration of mesenchymal stromal cells in kidney grafts against ischemia reperfusion injury-effective delivery without kidney function improvement posttransplant [J]. Transplantation, 2020: 105(3): 517-528.
[38]
Reinders ME, de Fijter JW, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study [J]. Stem Cells Transl Med, 2013, 2(2): 107-111.
[39]
Kim JS, Lee JH, Kwon O, et al. Rapid deterioration of preexisting renal insufficiency after autologous mesenchymal stem cell therapy [J]. Kidney Res Clin Pract, 2017, 36(2): 200-204.
[40]
Ullah M, Liu DD, Rai S, et al. Pulsed focused ultrasound enhances the therapeutic effect of mesenchymal stromal cell-derived extracellular vesicles in acute kidney injury [J]. Stem Cell Res Ther, 2020, 11(1): 398.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[3] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[4] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[5] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[6] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[7] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[8] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[9] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[10] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[11] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[12] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[13] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[14] 王静, 丁红. 益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1、α-平滑肌肌动蛋白表达的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 161-165.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要