切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (04) : 224 -226. doi: 10.3877/cma.j.issn.2095-3216.2021.04.007

综述

吲哚胺2,3-双加氧酶在肾脏疾病中的研究进展
刘露露1, 赖学莉1, 谌卫1, 郭志勇1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院
  • 收稿日期:2021-04-13 出版日期:2021-08-26
  • 通信作者: 郭志勇
  • 基金资助:
    国家自然科学基金(81770763, 81800678)

Research progress of indoleamine 2, 3-dioxygenase in renal disease

Lulu Liu1, Xueli Lai1, Wei Chen1, Zhiyong Guo1,()   

  1. 1. Department of Nephrology, First Affiliated Hospital of Naval Military Medical University, Shanghai 200433, China
  • Received:2021-04-13 Published:2021-08-26
  • Corresponding author: Zhiyong Guo
引用本文:

刘露露, 赖学莉, 谌卫, 郭志勇. 吲哚胺2,3-双加氧酶在肾脏疾病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(04): 224-226.

Lulu Liu, Xueli Lai, Wei Chen, Zhiyong Guo. Research progress of indoleamine 2, 3-dioxygenase in renal disease[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(04): 224-226.

吲哚胺2,3-双加氧酶(IDO)是色氨酸(TRP)沿犬尿氨酸(KYN)途径降解的关键限速酶,在肿瘤领域研究广泛,与免疫抑制和免疫衰减有关,可以促进肿瘤免疫逃逸。大多数肾脏疾病都具有炎症和免疫系统激活的潜在机制。IDO在动物实验中已证实可以缓解肾脏炎症和促进纤维化,然而其具体机制有待探索。本综述总结IDO在肾脏疾病中可能的作用机制。

Indoleamine 2, 3-dioxygenase (IDO) is a key rate-limiting enzyme involved in tryptophane (TRP) degradation along the kynurenine (KYN) pathway. At present, it has been widely studied in the field of tumor, and is related to immunosuppression and immunoattenuation, which can promote the immune escape of tumors. Most renal diseases have underlying mechanisms of inflammation and immune system activation. IDO has been proven to alleviate renal inflammation and promote fibrosis in animal experiments, but its specific mechanism remains to be explored.This review summarized the possible action mechanisms of IDO in renal diseases.

图1 吲哚胺2,3-双加氧酶免疫抑制机制图
[1]
Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance [J]. Trends Immunol, 2016, 37(3): 193-207.
[2]
Liu M, Wang X, Wang L, et al. Targeting the IDO1 pathway in cancer: from bench to bedside [J]. J Hematol Oncol, 2018, 11(1): 100.
[3]
Lim YJ, Foo TC, Yeung AWS, et al. Human indoleamine 2,3-dioxygenase 1 is an efficient mammalian nitrite reductase [J]. Biochemistry, 2019, 58(7): 974-986.
[4]
Ye Z, Yue L, Shi J, et al. Role of IDO and TDO in cancers and related diseases and the therapeutic implications [J]. J Cancer, 2019, 10(12): 2771-2782.
[5]
Li S, Li L, Wu J, et al. TDO promotes hepatocellular carcinoma progression [J]. Onco Targets Ther, 2020, 13: 5845-5855.
[6]
Labadie BW, Bao R, Luke JJ. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan-kynurenine-aryl hydrocarbon axis [J]. Clin Cancer Res, 2019, 25(5): 1462-1171.
[7]
Liu K, Yang Y, Chen Y, et al. The therapeutic effect of dendritic cells expressing indoleamine 2,3-dioxygenase (IDO) on an IgA nephropathy mouse model [J]. Int Urol Nephrol, 2020, 52(2): 399-407.
[8]
Davison LM, Liu JC, Huang L, et al. Limited effect of indolamine 2,3-dioxygenase expression and enzymatic activity on lupus-like disease in B6.Nba2 mice [J]. Front Immunol, 2019, 10: 2017.
[9]
Hou W, Li S, Wu Y, et al. Inhibition of indoleamine 2, 3-dioxygenase-mediated tryptophan catabolism accelerates crescentic glomerulonephritis [J]. Clin Exp Immunol, 2009, 156(2): 363-372.
[10]
Matheus LHG, Simão GM, Amaral TA, et al. Indoleamine 2, 3-dioxygenase (IDO) increases during renal fibrogenesis and its inhibition potentiates TGF-β1-induced epithelial to mesenchymal transition [J]. BMC Nephrol, 2017, 18(1): 287.
[11]
Na N, Luo Y, Zhao D, et al. Prolongation of kidney allograft survival regulated by indoleamine 2, 3-dioxygenase in immature dendritic cells generated from recipient type bone marrow progenitors [J]. Mol Immunol, 2016, 79: 22-31.
[12]
Nakamura A, Nambu T, Ebara S, et al. Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response [J]. Proc Natl Acad Sci USA, 2018, 115(33): E7776-E7785.
[13]
Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase [J]. Immunity, 2005, 22(5): 633-642.
[14]
Ravishankar B, Liu H, Shinde R, et al. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity [J]. Proc Natl Acad Sci USA, 2015, 112(34): 10774-10779.
[15]
Okada A, Nangaku M, Jao TM, et al. D-serine, a novel uremic toxin, induces senescence in human renal tubular cells via GCN2 activation [J]. Sci Rep, 2017, 7(1): 11168.
[16]
Robertson LT, Trevino-Villarreal JH, Mejia P, et al. Protein and calorie restriction contribute additively to protection from renal ischemia reperfusion injury partly via leptin reduction in male mice [J]. J Nutr, 2015, 145(8): 1717-1727.
[17]
Chaudhary K, Shinde R, Liu H, et al. Amino acid metabolism inhibits antibody-driven kidney injury by inducing autophagy [J]. J Immunol, 2015, 194(12): 5713-5724.
[18]
Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside [J]. Semin Cancer Biol, 2019, 59: 125-132.
[19]
Ye X, Ruan JW, Huang H, et al. PI3K-Akt-mTOR inhibition by GNE-477 inhibits renal cell carcinoma cell growth in vitro and in vivo [J]. Aging (Albany NY), 2020, 12(10): 9489-9499.
[20]
Lu Q, Wang WW, Zhang MZ, et al. ROS induces epithelial-mesenchymal transition via the TGF-β1/PI3K/Akt/mTOR pathway in diabetic nephropathy [J]. Exp Ther Med, 2019, 17(1): 835-846.
[21]
Ogiso H, Ito H, Ando T, et al. The deficiency of indoleamine 2,3-dioxygenase aggravates the CCl4-induced liver fibrosis in mice [J]. PLoS One, 2016, 11(9): e0162183.
[22]
Lee JW, Oh JE, Rhee KJ, et al. Co-treatment with interferon-γ and 1-methyl tryptophan ameliorates cardiac fibrosis through cardiac myofibroblasts apoptosis [J]. Mol Cell Biochem, 2019, 458(1-2): 197-205.
[23]
Li L, Wang T, Li S, et al. TDO2 promotes the EMT of hepatocellular carcinoma through Kyn-AhR pathway [J]. Front Oncol, 2020, 10: 562823.
[24]
Hao N, Whitelaw ML. The emerging roles of AhR in physiology and immunity [J]. Biochem Pharmacol, 2013, 86(5): 561-570.
[25]
Cheong JE, Sun L. Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy - challenges and opportunities [J]. Trends Pharmacol Sci, 2018, 39(3): 307-325.
[26]
de Araújo EF, Feriotti C, Galdino NAL, et al. The IDO-AhR axis controls Th17/Treg immunity in a pulmonary model of fungal infection [J]. Front Immunol, 2017, 8: 880.
[27]
Itkin B, Breen A, Turyanska L, et al. New treatments in renal cancer: the AhR ligands [J]. Int J Mol Sci, 2020, 21(10): 3551.
[28]
Wang M, Hu HH, Chen YY, et al. Novel poricoic acids attenuate renal fibrosis through regulating redox signalling and aryl hydrocarbon receptor activation [J]. Phytomedicine, 2020, 79: 153323.
[29]
Liu JR, Miao H, Deng DQ, et al. Gut microbiota-derived tryptophan metabolism mediates renal fibrosis by aryl hydrocarbon receptor signaling activation [J]. Cell Mol Life Sci, 2021, 78(3): 909-922.
[30]
Moffett JR, Namboodiri MA. Tryptophan and the immune response [J]. Immunol Cell Biol, 2003, 81(4): 247-265.
[1] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[2] 张艳如, 苏晓乐, 王利华. 丝氨酸蛋白酶Corin与肾脏疾病的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 220-223.
[3] 李德伦, 袁思宇, 刘安琪. 微小RNA-155在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(01): 39-43.
[4] 沈婉君, 王田田, 尹智炜, 谢院生. 免疫电镜技术在肾脏疾病诊断和研究中的应用[J]. 中华肾病研究电子杂志, 2022, 11(04): 219-223.
[5] 张爽, 刘书馨, 牟向伟, 姜博文, 董毳, 由莲莲. 人工智能技术在肾脏病中的应用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(06): 342-346.
[6] 张亚伟, 王兴智. 可溶性ST2蛋白在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 292-295.
[7] 张楷齐, 吴晶魁, 倪兆慧. 铁死亡在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 268-273.
[8] 季红娟, 林娟. 基于分类树方法构建糖尿病肾脏疾病发病风险模型[J]. 中华肾病研究电子杂志, 2021, 10(05): 246-251.
[9] 杜晓艳, 黄蓉双, 马良, 付平. 脂肪酸结合蛋白4在肾脏疾病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(01): 44-46.
[10] 洪浩, 周苏雅, 陈月, 李明. 液相色谱质谱法对47例非透析慢性肾脏病患者色氨酸-犬尿氨酸通路的分析[J]. 中华肾病研究电子杂志, 2020, 09(06): 247-252.
[11] 李琦, 朱晗玉, 徐莉, 韩秋霞, 闫景瑶, 赵焕焕, 丁潇楠, 范秋灵. 足细胞损伤时细胞周期调控及MDM2-p53通路作用的研究进展[J]. 中华肾病研究电子杂志, 2020, 09(04): 176-180.
[12] 王玲, 何娅妮. Parkin的分子结构和生物学功能及其在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2020, 09(02): 74-77.
[13] 田冬琴, 刘开翔, 占志朋, 谢席胜. 糖尿病肾病规范化诊断研究进展[J]. 中华肾病研究电子杂志, 2019, 08(03): 132-137.
[14] 李雨竹, 滕兰波, 刘书馨. 半乳糖凝集素-3与肾脏疾病的关系[J]. 中华肾病研究电子杂志, 2019, 08(02): 91-93.
[15] 刘沫言, 谢院生, 董哲毅, 张雪光, 孙雪峰, 张冬, 周建辉, 朱晗玉, 陈香美. 血红蛋白在鉴别糖尿病肾病与非糖尿病肾脏疾病中的作用[J]. 中华肾病研究电子杂志, 2018, 07(06): 271-276.
阅读次数
全文


摘要