[1] |
Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance [J]. Trends Immunol, 2016, 37(3): 193-207.
|
[2] |
Liu M, Wang X, Wang L, et al. Targeting the IDO1 pathway in cancer: from bench to bedside [J]. J Hematol Oncol, 2018, 11(1): 100.
|
[3] |
Lim YJ, Foo TC, Yeung AWS, et al. Human indoleamine 2,3-dioxygenase 1 is an efficient mammalian nitrite reductase [J]. Biochemistry, 2019, 58(7): 974-986.
|
[4] |
Ye Z, Yue L, Shi J, et al. Role of IDO and TDO in cancers and related diseases and the therapeutic implications [J]. J Cancer, 2019, 10(12): 2771-2782.
|
[5] |
Li S, Li L, Wu J, et al. TDO promotes hepatocellular carcinoma progression [J]. Onco Targets Ther, 2020, 13: 5845-5855.
|
[6] |
Labadie BW, Bao R, Luke JJ. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan-kynurenine-aryl hydrocarbon axis [J]. Clin Cancer Res, 2019, 25(5): 1462-1171.
|
[7] |
Liu K, Yang Y, Chen Y, et al. The therapeutic effect of dendritic cells expressing indoleamine 2,3-dioxygenase (IDO) on an IgA nephropathy mouse model [J]. Int Urol Nephrol, 2020, 52(2): 399-407.
|
[8] |
Davison LM, Liu JC, Huang L, et al. Limited effect of indolamine 2,3-dioxygenase expression and enzymatic activity on lupus-like disease in B6.Nba2 mice [J]. Front Immunol, 2019, 10: 2017.
|
[9] |
Hou W, Li S, Wu Y, et al. Inhibition of indoleamine 2, 3-dioxygenase-mediated tryptophan catabolism accelerates crescentic glomerulonephritis [J]. Clin Exp Immunol, 2009, 156(2): 363-372.
|
[10] |
Matheus LHG, Simão GM, Amaral TA, et al. Indoleamine 2, 3-dioxygenase (IDO) increases during renal fibrogenesis and its inhibition potentiates TGF-β1-induced epithelial to mesenchymal transition [J]. BMC Nephrol, 2017, 18(1): 287.
|
[11] |
Na N, Luo Y, Zhao D, et al. Prolongation of kidney allograft survival regulated by indoleamine 2, 3-dioxygenase in immature dendritic cells generated from recipient type bone marrow progenitors [J]. Mol Immunol, 2016, 79: 22-31.
|
[12] |
Nakamura A, Nambu T, Ebara S, et al. Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response [J]. Proc Natl Acad Sci USA, 2018, 115(33): E7776-E7785.
|
[13] |
Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase [J]. Immunity, 2005, 22(5): 633-642.
|
[14] |
Ravishankar B, Liu H, Shinde R, et al. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity [J]. Proc Natl Acad Sci USA, 2015, 112(34): 10774-10779.
|
[15] |
Okada A, Nangaku M, Jao TM, et al. D-serine, a novel uremic toxin, induces senescence in human renal tubular cells via GCN2 activation [J]. Sci Rep, 2017, 7(1): 11168.
|
[16] |
Robertson LT, Trevino-Villarreal JH, Mejia P, et al. Protein and calorie restriction contribute additively to protection from renal ischemia reperfusion injury partly via leptin reduction in male mice [J]. J Nutr, 2015, 145(8): 1717-1727.
|
[17] |
Chaudhary K, Shinde R, Liu H, et al. Amino acid metabolism inhibits antibody-driven kidney injury by inducing autophagy [J]. J Immunol, 2015, 194(12): 5713-5724.
|
[18] |
Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside [J]. Semin Cancer Biol, 2019, 59: 125-132.
|
[19] |
Ye X, Ruan JW, Huang H, et al. PI3K-Akt-mTOR inhibition by GNE-477 inhibits renal cell carcinoma cell growth in vitro and in vivo [J]. Aging (Albany NY), 2020, 12(10): 9489-9499.
|
[20] |
Lu Q, Wang WW, Zhang MZ, et al. ROS induces epithelial-mesenchymal transition via the TGF-β1/PI3K/Akt/mTOR pathway in diabetic nephropathy [J]. Exp Ther Med, 2019, 17(1): 835-846.
|
[21] |
Ogiso H, Ito H, Ando T, et al. The deficiency of indoleamine 2,3-dioxygenase aggravates the CCl4-induced liver fibrosis in mice [J]. PLoS One, 2016, 11(9): e0162183.
|
[22] |
Lee JW, Oh JE, Rhee KJ, et al. Co-treatment with interferon-γ and 1-methyl tryptophan ameliorates cardiac fibrosis through cardiac myofibroblasts apoptosis [J]. Mol Cell Biochem, 2019, 458(1-2): 197-205.
|
[23] |
Li L, Wang T, Li S, et al. TDO2 promotes the EMT of hepatocellular carcinoma through Kyn-AhR pathway [J]. Front Oncol, 2020, 10: 562823.
|
[24] |
Hao N, Whitelaw ML. The emerging roles of AhR in physiology and immunity [J]. Biochem Pharmacol, 2013, 86(5): 561-570.
|
[25] |
Cheong JE, Sun L. Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy - challenges and opportunities [J]. Trends Pharmacol Sci, 2018, 39(3): 307-325.
|
[26] |
de Araújo EF, Feriotti C, Galdino NAL, et al. The IDO-AhR axis controls Th17/Treg immunity in a pulmonary model of fungal infection [J]. Front Immunol, 2017, 8: 880.
|
[27] |
Itkin B, Breen A, Turyanska L, et al. New treatments in renal cancer: the AhR ligands [J]. Int J Mol Sci, 2020, 21(10): 3551.
|
[28] |
Wang M, Hu HH, Chen YY, et al. Novel poricoic acids attenuate renal fibrosis through regulating redox signalling and aryl hydrocarbon receptor activation [J]. Phytomedicine, 2020, 79: 153323.
|
[29] |
Liu JR, Miao H, Deng DQ, et al. Gut microbiota-derived tryptophan metabolism mediates renal fibrosis by aryl hydrocarbon receptor signaling activation [J]. Cell Mol Life Sci, 2021, 78(3): 909-922.
|
[30] |
Moffett JR, Namboodiri MA. Tryptophan and the immune response [J]. Immunol Cell Biol, 2003, 81(4): 247-265.
|