切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (04) : 219 -223. doi: 10.3877/cma.j.issn.2095-3216.2022.04.007

综述

免疫电镜技术在肾脏疾病诊断和研究中的应用
沈婉君1, 王田田1, 尹智炜2, 谢院生1,()   
  1. 1. 100853 北京,解放军总医院第一医学中心肾脏病医学部、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室
    2. 100853 北京,解放军总医院第一医学中心肾脏病医学部、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室;050017 石家庄,河北医科大学中西医结合学院
  • 收稿日期:2022-03-13 出版日期:2022-08-28
  • 通信作者: 谢院生
  • 基金资助:
    国家自然科学基金面上项目(82174115)

Application of immunoelectron microscopy in diagnosis and research of renal diseases

Wanjun Shen1, Tiantian Wang1, Zhiwei Yin2, Yuansheng Xie1,()   

  1. 1. Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853
    2. Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853; College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei Province; China
  • Received:2022-03-13 Published:2022-08-28
  • Corresponding author: Yuansheng Xie
引用本文:

沈婉君, 王田田, 尹智炜, 谢院生. 免疫电镜技术在肾脏疾病诊断和研究中的应用[J]. 中华肾病研究电子杂志, 2022, 11(04): 219-223.

Wanjun Shen, Tiantian Wang, Zhiwei Yin, Yuansheng Xie. Application of immunoelectron microscopy in diagnosis and research of renal diseases[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(04): 219-223.

免疫电镜技术是抗原抗体反应和电子显微镜相结合的技术,可在亚细胞和超微结构水平对抗原进行定位观察分析。其在肾脏疾病诊断和研究领域的应用包括单克隆免疫球蛋白沉积性肾病、免疫复合物介导的肾小球疾病、肾小球结构研究、肾小管疾病发病机制以及其他肾脏疾病。本文较为全面地展示了免疫电镜技术在肾脏疾病诊断和研究领域的重要作用和发展趋势,以期对今后相关领域的研究有所启发。

Immunoelectron microscopy is a combination of antigen-antibody reaction and electron microscopy, which can be used to observe and analyze antigens at subcellular and ultrastructural level. Its applications in diagnosis and research of renal diseases involve monoclonal immunoglobulin deposition nephropathy, immune complex-mediated glomerular diseases, glomerular structure research, pathogenesis of renal tubular diseases, and other renal diseases. This review comprehensively showed the important role and development trend of immunoelectron microscopy in diagnosis and research of renal diseases, in order to support the future research in related fields.

图1 免疫电镜技术的应用场景、拓展应用及优劣势
[1]
Singer SJ. Preparation of an electron-dense antibody conjugate [J]. Nature, 1959, 183(4674): 1523-1524.
[2]
Roth J, Bendayan M, Orci L. Ultrastructural localization of intracellular antigens by the use of protein A-gold complex [J]. J Histochem Cytochem, 1978, 26(12): 1074-1081.
[3]
Kim HL, Riew TR, Park J, et al. Correlative light and electron microscopy using frozen section obtained using cryo-ultramicrotomy [J]. Int J Mol Sci, 2021, 22(8): 4273.
[4]
Najafian B, Lusco MA, Alpers CE, et al. Approach to kidney biopsy: core curriculum 2022 [J]. Am J Kidney Dis, 2022, 80(1): 119-131.
[5]
Gertz MA. Immunoglobulin light chain amyloidosis: 2022 update on diagnosis, prognosis, and treatment [J]. Am J Hematol, 2022, 97(6): 818-829.
[6]
Sethi S, Rajkumar SV, D′agati VD. The complexity and heterogeneity of monoclonal immunoglobulin-associated renal diseases [J]. J Am Soc Nephrol, 2018, 29(7): 1810-1823.
[7]
Said SM, Best Rocha A, Valeri AM, et al. The characteristics of patients with kidney light chain deposition disease concurrent with light chain amyloidosis [J]. Kidney Int, 2022, 101(1): 152-163.
[8]
Kanzaki G, Okabayashi Y, Nagahama K, et al. Monoclonal immunoglobulin deposition disease and related diseases [J]. J Nippon Med Sch, 2019, 86(1): 2-9.
[9]
Benson MD, Buxbaum JN, Eisenberg DS, et al. Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee [J]. Amyloid, 2018, 25(4): 215-219.
[10]
陈思羽,韩伟霞,王晨. 肾淀粉样变性病的病理诊断与分型、分级的研究进展[J/CD]. 中华肾病研究电子杂志2020, 9 (2): 86-89.
[11]
Satoskar AA, Burdge K, Cowden DJ, et al. Typing of amyloidosis in renal biopsies: diagnostic pitfalls [J]. Arch Pathol Lab Med, 2007, 131(6): 917-922.
[12]
Lachmann HJ, Booth DR, Booth SE, et al. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis [J]. N Engl J Med, 2002, 346(23): 1786-1791.
[13]
Abildgaard N, Rojek AM, Moller HE, et al. Immunoelectron microscopy and mass spectrometry for classification of amyloid deposits [J]. Amyloid, 2020, 27(1): 59-66.
[14]
Heilman RL, Velosa JA, Holley KE, et al. Long-term follow-up and response to chemotherapy in patients with light-chain deposition disease [J]. Am J Kidney Dis, 1992, 20(1): 34-41.
[15]
Wang Q, Jiang F, Xu G. The pathogenesis of renal injury and treatment in light chain deposition disease [J]. J Transl Med, 2019, 17(1): 387.
[16]
王梅,王英,王素霞,等. 早期轻链沉积病的诊断 [J]. 中华肾脏病杂志2004, 20(2): 87-89.
[17]
王素霞,邹万忠,王梅,等. 肾轻链沉积病和轻链型淀粉样变的电镜及免疫电镜研究 [J]. 北京大学学报(医学版), 2003, 35(6): 576-580.
[18]
Fogo AB, Lusco MA, Najafian B, et al. AJKD atlas of renal pathology: light chain proximal tubulopathy [J]. Am J Kidney Dis, 2016, 67(2): e9-e10.
[19]
Büttner-Herold M, Krieglstein N, Chuva T, et al. Light chain restriction in proximal tubules-implications for light chain proximal tubulopathy [J]. Front Med (Lausanne), 2022, 9: 723758.
[20]
Li XM, Xu F, Liang DD, et al. Clinicopathologic characteristics of light chain proximal tubulopathy with light chain inclusions involving multiple renal cell types [J]. Clin Nephrol, 2018, 89(2): 83-92.
[21]
Kapur U, Barton K, Fresco R, et al. Expanding the pathologic spectrum of immunoglobulin light chain proximal tubulopathy [J]. Arch Pathol Lab Med, 2007, 131(9): 1368-1372.
[22]
Gu X, Barrios R, Cartwright J, et al. Light chain crystal deposition as a manifestation of plasma cell dyscrasias: the role of immunoelectron microscopy [J]. Hum Pathol, 2003, 34(3): 270-277.
[23]
Hoxha E, Reinhard L, Stahl RAK. Membranous nephropathy: new pathogenic mechanisms and their clinical implications [J]. Nat Rev Nephrol, 2022, 18(7): 466-478.
[24]
Prunotto M, Carnevali ML, Candiano G, et al. Autoimmunity in membranous nephropathy targets aldose reductase and SOD2 [J]. J Am Soc Nephrol, 2010, 21(3): 507-519.
[25]
Gödel M, Grahammer F, Huber TB. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy [J]. N Engl J Med, 2015, 372(11): 1073-10755.
[26]
Herwig J, Skuza S, Sachs W, et al. Thrombospondin type 1 domain-containing 7A localizes to the slit diaphragm and stabilizes membrane dynamics of fully differentiated podocytes [J]. J Am Soc Nephrol, 2019, 30(5): 824-839.
[27]
Rodrigues JC, Haas M, Reich HN. IgA nephropathy [J]. Clin J Am Soc Nephrol, 2017, 12(4): 677-686.
[28]
Lai KN, Tang SC, Schena FP, et al. IgA nephropathy [J]. Nat Rev Dis Primers, 2016, 2: 16001.
[29]
Nishioka R, Hara S, Kawahara H, et al. Glomerulonephritis with severe nephrotic syndrome induced by immune complexes composed of galactose-deficient IgA1 in primary Sjogren′s syndrome: a case report [J]. BMC Nephrol, 2021, 22(1): 108.
[30]
Dysart NK Jr, Sisson S, Vernier RL. Immunoelectron microscopy of IgA nephropathy [J]. Clin Immunol Immunopathol, 1983, 29(2): 254-270.
[31]
王素霞,邹万忠,杨莉,等. 膜性肾病合并IgA肾病的临床病理特点[J]. 中华病理学杂志2007, 36(3): 171-174.
[32]
Sjowall C, Olin AI, Skogh T, et al. C-reactive protein, immunoglobulin G and complement co-localize in renal immune deposits of proliferative lupus nephritis [J]. Autoimmunity, 2013, 46(3): 205-214.
[33]
Horvei KD, Pedersen HL, Fismen S, et al. Lupus nephritis progression in FcγRIIB-/-yaa mice is associated with early development of glomerular electron dense deposits and loss of renal DNase I in severe disease [J]. PLoS One, 2017, 12(11): e0188863.
[34]
Grahammer F, Wigge C, Schell C, et al. A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes [J]. JCI Insight, 2016, 1(9): e86177.
[35]
Yuan HP, Takeuchi E, Taylor GA, et al. Nephrin dissociates from actin, and its expression is reduced in early experimental membranous nephropathy [J]. J Am Soc Nephrol, 2002, 13(4): 946-956.
[36]
Roselli S, Gribouval O, Boute N, et al. Podocin localizes in the kidney to the slit diaphragm area [J]. Am J Pathol, 2002, 160(1): 131-139.
[37]
La TM, Tachibana H, Li SA, et al. Dynamin 1 is important for microtubule organization and stabilization in glomerular podocytes [J]. FASEB J, 2020, 34(12): 16449-16463.
[38]
Sachs M, Wetzel S, Reichel TJ, et al. ADAM10-mediated ectodomain shedding is an essential driver of podocyte damage [J]. J Am Soc Nephrol, 2021, 32(6): 1389-1408.
[39]
Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease [J]. Kidney Int, 2016, 89(1): 58-67.
[40]
Sun J, Hultenby K, Axelsson J, et al. Proximal tubular expression patterns of megalin and cubilin in proteinuric nephropathies [J]. Kidney Int Rep, 2017, 2(4): 721-732.
[41]
胡小影. MC1R在肾脏中表达定位及AKI模型肾组织中的表达变化研究 [D]. 郑州:郑州大学,2021.
[42]
Cao Y, Zhang Y, Wang S, et al. Detection of the hepatitis C virus antigen in kidney tissue from infected patients with various glomerulonephritis [J]. Nephrol Dial Transplant, 2009, 24(9): 2745-2751.
[43]
Stamatiades EG, Tremblay ME, Bohm M, et al. Immune monitoring of trans-endothelial transport by kidney-resident macrophages [J]. Cell, 2016, 166(4): 991-1003.
[44]
李红梅,张勤奋,李茵茵,等. 透射电镜和光镜联合应用于细胞观察[J]. 实验室研究与探索2019, 38(11): 18-20, 65.
[45]
Nasr SH, Fogo AB. New developments in the diagnosis of fibrillary glomerulonephritis [J]. Kidney Int, 2019, 96(3): 581-592.
[1] 张艳如, 苏晓乐, 王利华. 丝氨酸蛋白酶Corin与肾脏疾病的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 220-223.
[2] 侯晓涛, 陈建雄, 钟学军, 岳书玲, 王伶, 杨惠霏, 官阳, 周军. 轻链近端肾小管病超微病理特征及免疫电镜的诊断价值[J]. 中华肾病研究电子杂志, 2023, 12(02): 67-73.
[3] 王卫东, 陈佳, 何娅妮, 陈客宏. 尿诱骗受体2/肌酐水平与糖尿病肾小管病预后的关系[J]. 中华肾病研究电子杂志, 2023, 12(02): 61-66.
[4] 程庆砾. 免疫抑制剂在肾小球疾病中的合理使用[J]. 中华肾病研究电子杂志, 2023, 12(02): 120-120.
[5] 李德伦, 袁思宇, 刘安琪. 微小RNA-155在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(01): 39-43.
[6] 王晓玉, 胡豪飞, 韦宁荣, 毕慧欣. 特发性膜性肾病患者血清β2微球蛋白与局灶节段性肾小球硬化病变的关系分析[J]. 中华肾病研究电子杂志, 2022, 11(05): 249-257.
[7] 刘思梦, 陈思, 周梦, 李青, 吴琳, 袁杨刚, 张波, 王宁宁, 张莉, 毛慧娟, 邢昌赢. 2021年肾脏病学基础研究进展[J]. 中华肾病研究电子杂志, 2022, 11(02): 79-83.
[8] 贾丽芳, 张玉萍, 白文英, 周培一, 王甲正. 长链非编码核糖核酸LINC00261通过miR-148b-3p/PTEN途径对高糖环境中HK-2细胞的保护作用[J]. 中华肾病研究电子杂志, 2022, 11(01): 22-28.
[9] 陈钰澜, 陈健文, 朱飞, 王田田, 张妍, 刘娇娜, 黄梦杰, 吴玲玲, 陈香美. 紫草素抑制缺血再灌注肾损伤后肾小管细胞的增殖和迁移[J]. 中华肾病研究电子杂志, 2022, 11(01): 15-21.
[10] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[11] 徐玲玲, 田汉, 闻萍, 何伟春. 利妥昔单抗治疗难治性微小病变性肾病一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(05): 617-621.
[12] 高利超, 吕强, 王玉洁, 张冬梅, 丁文飞, 曹灵, 欧三桃. 联合检测外周血miRNA-21和miRNA-192对慢性肾小球肾炎早期肾功能损害的预测价值[J]. 中华临床医师杂志(电子版), 2022, 16(09): 887-891.
[13] 程旭, 俞悦, 裴小华. 核素肾小球滤过率法在临床开展的现状与思考[J]. 中华诊断学电子杂志, 2023, 11(02): 73-76.
[14] 裴小华, 张涛, 金柯, 柏云, 高飞, 朱蓓, 赵卫红. 非人类免疫缺陷病毒患者感染肺孢子菌肺炎的诊断学特征并文献复习[J]. 中华诊断学电子杂志, 2022, 10(04): 224-228.
[15] 何圣清, 袁唯唯, 孟莞瑞, 符青松, 郑晓斌, 武红梅. 达格列净联合二甲双胍治疗对早期2型糖尿病肾病患者肾小管功能和血清Klotho的影响[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 236-242.
阅读次数
全文


摘要