[1] |
Hojs N, Fissell WH, Roy S. Ambulatory hemodialysis-technology landscape and potential for patient-centered treatment [J]. Clin J Am Soc Nephrol, 2020, 15(1): 152-159.
|
[2] |
Armignacco P, Lorenzin A, Neri M, et al. Wearable devices for blood purification: principles, miniaturization, and technical challenges [J]. Semin Dial, 2015, 28(2): 125-130.
|
[3] |
宋磊,黄理旭,周春华. 新型便携式人工肾研究进展[J]. 海军医学杂志,2018, 39 (1): 96-98.
|
[4] |
van Gelder MK, Jong JAW, Folkertsma L, et al. Urea removal strategies for dialysate regeneration in a wearable artificial kidney [J]. Biomaterials, 2020, 234: 119735.
|
[5] |
于茜,周建辉,赵小淋,等. 血液净化吸附材料的临床发展[J/CD]. 中华肾病研究电子杂志,2021, 10(3): 170-174.
|
[6] |
Meng F, Seredych M, Chen C, et al. MXene sorbents for removal of urea from dialysate: a step toward the wearable artificial kidney [J]. ACS Nano, 2018, 12(10): 10518-10528.
|
[7] |
Kidambi PR, Jang D, Idrobo JC, et al. Nanoporous atomically thin graphene membranes for desalting and dialysis applications [J]. Adv Mater, 2017, 29(33): e1700277.
|
[8] |
于茜,周建辉,赵小淋,等. 血液净化膜材料的临床发展[J/CD]. 中华肾病研究电子杂志,2021, 10(2): 103-108.
|
[9] |
Haroon S, Davenport A. Haemodialysis at home: review of current dialysis machines [J]. Expert Rev Med Devices, 2018, 15(5): 337-347.
|
[10] |
Wilcox SB, Carver M, Yau M, et al. Results of human factors testing in a novel hemodialysis system designed for ease of patient use [J]. Hemodial Int, 2016, 20(4): 643-649.
|
[11] |
Gura V, Rivara MB, Bieber S, et al. A wearable artificial kidney for patients with end-stage renal disease [J]. JCI Insight, 2016, 1(8): e86397.
|
[12] |
Bazaev NA, Putria BM, Streltsov EV. Portable equipment for artificial blood purification [J]. Med Tekh, 2014, 6: 15-18.
|
[13] |
van Gelder MK, Mihaila SM, Jansen J, et al. From portable dialysis to a bioengineered kidney [J]. Expert Rev Med Devices, 2018, 15(5): 323-336.
|
[14] |
Evenepoel P, Meijers BK, Bammens B, et al. Phosphorus metabolism in peritoneal dialysis- and haemodialysis-treated patients [J]. Nephrol Dial Transplant, 2016, 31(9): 1508-1514.
|
[15] |
Salani M, Roy S, Fissell WH 4th. Innovations in wearable and implantable artificial kidneys [J]. Am J Kidney Dis, 2018, 72(5): 745-751.
|
[16] |
Ronco C, Fecondini L. The Vicenza wearable artificial kidney for peritoneal dialysis (ViWAK PD) [J]. Blood Purif, 2007, 25(4): 383-388.
|
[17] |
Humes HD, Buffington D, Westover AJ, et al. The bioartificial kidney: current status and future promise [J]. Pediatr Nephrol, 2014, 29(3): 343-351.
|
[18] |
Peired AJ, Mazzinghi B, De Chiara L, et al. Bioengineering strategies for nephrologists: kidney was not built in a day [J]. Expert Opin Biol Ther, 2020, 20(5): 467-480.
|
[19] |
Buffington DA, Pino CJ, Chen L, et al. Bioartificial renal epithelial cell system (BRECS): a compact, cryopreservable extracorporeal renal replacement device [J]. Cell Med, 2012, 4(1): 33-43.
|
[20] |
Pino CJ, Westover AJ, Buffington DA, et al. Bioengineered renal cell therapy device for clinical translation [J]. ASAIO J, 2017, 63(3): 305-315.
|
[21] |
Westover AJ, Buffington DA, Johnston KA, et al. A bio-artificial renal epithelial cell system conveys survival advantage in a porcine model of septic shock [J]. J Tissue Eng Regen Med, 2017, 11(3): 649-657.
|
[22] |
Nissenson AR. Bottom-up nanotechnology: the human nephron filter [J]. Semin Dial, 2009, 22(6): 661-664.
|
[23] |
Weiler N. The kidney project wins KidneyX award to enable simpler, safer at-home dialysis [EB/OL]. 2020:
URL
|
[24] |
Jang KJ, Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells [J]. Lab Chip, 2010, 10(1): 36-42.
|
[25] |
Vriend J, Peters JGP, Nieskens TTG, et al. Flow stimulates drug transport in a human kidney proximal tubule-on-a-chip independent of primary cilia [J]. Biochim Biophys Acta Gen Subj, 2019, 1864(1): 129433.
|
[26] |
Petrosyan A, Cravedi P, Villani V, et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier [J]. Nat Commun, 2019, 10(1): 3656.
|
[27] |
Chen H, Bian F, Sun L, et al. Hierarchically molecular imprinted porous particles for biomimetic kidney cleaning [J]. Adv Mater, 2020, 32(52): e2005394.
|
[28] |
Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips [J]. Sci Rep, 2016, 6: 34845.
|
[29] |
Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption in 3D vascularized proximal tubule models [J]. Proc Natl Acad Sci USA, 2019, 116(12): 5399-5404.
|
[30] |
Subramanian B, Kaya O, Pollak MR, et al. Guided tissue organization and disease modeling in a kidney tubule array [J]. Biomaterials, 2018, 183: 295-305.
|
[31] |
Flegeau K, Rubin S, Mucha S, et al. Towards an in vitro model of the glomerular barrier unit with an innovative bioassembly method [J]. Nephrol Dial Transplant, 2020, 35(2): 240-250.
|
[32] |
Cho CY, Chiang TH, Hsieh LH, et al. Development of a novel hanging drop platform for engineering controllable 3D microenvironments [J]. Front Cell Dev Biol, 2020, 8: 327.
|
[33] |
Niu D, Wei HJ, Lin L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9 [J]. Science, 2017, 357(6357): 1303-1307.
|
[34] |
Kim SC, Mathews DV, Breeden CP, et al. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion [J]. Am J Transplant, 2019, 19(8): 2174-2185.
|