切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (04) : 231 -234. doi: 10.3877/cma.j.issn.2095-3216.2022.04.009

综述

成纤维细胞生长因子21与血管钙化关系研究进展
夏庆玲1, 欧三桃1,()   
  1. 1. 646000 泸州,西南医科大学附属医院肾病内科、四川省肾脏疾病临床医学研究中心
  • 收稿日期:2021-12-07 出版日期:2022-08-28
  • 通信作者: 欧三桃
  • 基金资助:
    四川省肾脏疾病临床医学研究中心2020年开放课题重点项目(2019YFS0537-3)

Research progress on the relationship between fibroblast growth factor 21 and vascular calcification

Qingling Xia1, Santao Ou1,()   

  1. 1. Department of Nephrology, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Nephrology, Luzhou 646000, Sichuan Province, China
  • Received:2021-12-07 Published:2022-08-28
  • Corresponding author: Santao Ou
引用本文:

夏庆玲, 欧三桃. 成纤维细胞生长因子21与血管钙化关系研究进展[J]. 中华肾病研究电子杂志, 2022, 11(04): 231-234.

Qingling Xia, Santao Ou. Research progress on the relationship between fibroblast growth factor 21 and vascular calcification[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(04): 231-234.

成纤维细胞生长因子21(FGF21)是成纤维细胞生长因子家族的一员,具有降脂、抗炎、抗氧化等生物学作用。近年来研究发现,FGF21能够有效抑制血管钙化,降低心血管事件的发生,被视为心血管系统新的保护因素,有望成为临床上防治血管钙化的新靶点。本文就FGF21与血管钙化关系的最新研究进展做一综述。

Fibroblast growth factor 21 (FGF21) is a member of the fibroblast growth factor family, which has biological effects such as lipid-lowering, anti-inflammation and anti-oxidation. In recent years, studies have found that FGF21 can effectively inhibit vascular calcification and reduce the occurrence of cardiovascular events. So, it has been regarded as a new protective factor for the cardiovascular system, and is expected to become a new clinical target for the prevention and treatment of vascular calcification. This article reviewed the latest research progress on the relationship between FGF21 and vascular calcification.

图1 FGF21与血管钙化的关系注:FGF21:成纤维细胞生长因子21;FGFR1:成纤维细胞生长因子受体1;CHOP: CCAAT/增强子结合蛋白同源蛋白;Caspase3:半胱氨酸天冬氨酸蛋白酶3;Caspase9:半胱氨酸天冬氨酸蛋白酶9;Caspase12:半胱氨酸天冬氨酸蛋白酶12;OPG:骨保护素;RANKL:receptor activator of nuclear factor-κB ligand,核因子-κB受体活化因子配体;RANK:receptor activator of nuclear factor-κB,核因子-κB受体活化因子;PI3K:磷脂酰肌醇3激酶;AKT:蛋白激酶B;P38 MAPK:P38 mitogen-activated protein kinase,P38丝裂原活化蛋白激酶;PPARγ:过氧化物酶体增殖物激活受体γ;BMP2:骨形态发生蛋白2
[1]
王雪荣. 慢性肾脏病患者冠状动脉钙化与心血管事件、死亡临床相关性研究及Meta分析 [D]. 合肥:安徽医科大学,2019.
[2]
Wang N, Zhao TT, Li SM, et al. Fibroblast growth factor 21 exerts its anti-inflammatory effects on multiple cell types of adipose tissue in obesity [J]. Obesity (Silver Spring), 2019, 27(3): 399-408.
[3]
Yan J, Wang J, Huang H, et al. Fibroblast growth factor 21 delayed endothelial replicative senescence and protected cells from H2O2-induced premature senescence through SIRT1 [J]. Am J Transl Res, 2017, 9(10): 4492-4501.
[4]
Chen A, Liu J, Zhu J, et al. FGF21 attenuates hypoxia induced dysfunction and apoptosis in HPAECs through alleviating endoplasmic reticulum stress [J]. Int J Mol Med, 2018, 42(3): 1684-1694.
[5]
Jelenik T, Dille M, Müller-Lühlhoff S, et al. FGF21 regulates insulin sensitivity following long-term chronic stress [J]. Mol Metab, 2018, 16: 126-138.
[6]
Nishimura T, Nakatake Y, Konishi M, et al. Identification of a novel FGF, FGF-21, preferentially expressed in the liver [J]. Biochim Biophys Acta, 2000, 1492(1): 203-206.
[7]
史雨晨,柳景华. 成纤维细胞生长因子21在大鼠各组织中表达分布的研究 [J]. 心肺血管病杂志2016, 35(7): 574-577.
[8]
Muise ES, Azzolina B, Kuo DW, et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states [J]. Mol Pharmacol, 2008, 74(2): 403-412.
[9]
Badman MK, Pissios P, Kennedy AR, et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states [J]. Cell Metab, 2007, 5(6): 426-437.
[10]
Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members [J]. Mol Cell Biol, 2007, 27(9): 3417-3428.
[11]
Fang Y, Ginsberg C, Sugatani T, et al. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification [J]. Kidney Int, 2014, 85(1): 142-150.
[12]
王中群,李丽华. 关注血管钙化的起源、演进与转归研究[J]. 中国动脉硬化杂志2018, 26(11): 1086-1090.
[13]
Proudfoot D, Skepper JN, Hegyi L, et al. Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies [J]. Circ Res, 2000, 87(11): 1055-1062.
[14]
Clarke MC, Littlewood TD, Figg N, et al. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration [J]. Circ Res, 2008, 102(12): 1529-1538.
[15]
Wu H, Guo H, Liu H, et al. Copper sulfate-induced endoplasmic reticulum stress promotes hepatic apoptosis by activating CHOP, JNK and caspase-12 signaling pathways [J]. Ecotoxicol Environ Saf, 2020, 191: 110236.
[16]
靳海斌,刘丽君,高波. 内质网应激在成纤维细胞生长因子21抑制大鼠血管钙化过程中的作用[J]. 中国动脉硬化杂志2019, 27(12): 1032-1036, 1093.
[17]
Shi Y, Wang S, Peng H, et al. Fibroblast growth factor 21 attenuates vascular calcification by alleviating endoplasmic reticulum stress mediated apoptosis in rats [J]. Int J Biol Sci, 2019, 15(1): 138-147.
[18]
Datta D, Khatri P, Singh A, et al. Mycobacterium fortuitum-induced ER-mitochondrial calcium dynamics promotes calpain/caspase-12/caspase-9 mediated apoptosis in fish macrophages [J]. Cell Death Discov, 2018, 4: 30.
[19]
史雨晨,柳景华. 纤维细胞生长因子21对血管钙化大鼠特异性caspase-12凋亡途径作用的研究[J]. 心肺血管病杂志2021, 40(6): 628-633.
[20]
Cao F, Liu X, Cao X, et al. Fibroblast growth factor 21 plays an inhibitory role in vascular calcification in vitro through OPG/RANKL system [J]. Biochem Biophys Res Commun, 2017, 491(3): 578-586.
[21]
Olapoju SO, Adejobi OI, Le Thi X. Fibroblast growth factor 21; review on its participation in vascular calcification pathology [J]. Vascul Pharmacol, 2020, 125-126: 106636.
[22]
Shi Y, Lu W, Hou Y, et al. Fibroblast growth factor 21 ameliorates vascular calcification by inhibiting osteogenic transition in vitamin D3 plus nicotine-treated rats [J]. Biochem Biophys Res Commun, 2018, 495(4): 2448-2455.
[23]
马盼飞,王超群,谷明旗,等. 过氧化物酶体增殖物激活受体在肝脏疾病中的作用及分子机制研究进展[J]. 中华消化外科杂志2019, 18(4): 403-406.
[24]
付坤,辛毅,史雨晨,等. 成纤维细胞生长因子21对大鼠血管平滑肌钙化的影响及机制[J]. 中华心血管病杂志2015, 43(10): 879-886.
[25]
Li X, Yang HY, Giachelli CM. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells [J]. Atherosclerosis, 2008, 199(2): 271-277.
[26]
刘曜蓉,严豪,李振元,等. 磷酸钙晶体通过BMP-2/Smad信号通路促进血管钙化[J]. 中华肾脏病杂志2018, 34(8): 608-615.
[27]
覃春美,魏晓,龚财判,等. 血管钙化大鼠肾动脉BMP2/Smad1/Runx2信号通路的表达[J]. 四川大学学报(医学版), 2016, 47(2): 180-183.
[28]
Liu X, Cao F, Liu S, et al. BMP2/Smad signaling pathway is involved in the inhibition function of fibroblast growth factor 21 on vascular calcification [J]. Biochem Biophys Res Commun, 2018, 503(2): 930-937.
[29]
Li B, Wang Z, Hu Z, et al. P38 MAPK signaling pathway mediates angiotensin II-induced miR143/145 gene cluster downregulation during aortic dissection formation [J]. Ann Vasc Surg, 2017, 40: 262-273.
[30]
Cao F, Liu X, Cao X, et al. Fibroblast growth factor 21 plays an inhibitory role in vascular calcification in vitro through OPG/RANKL system [J]. Biochem Biophys Res Commun, 2017, 491(3): 578-586.
[31]
Ong KL, Campbell S, Wu BJ, et al. Relationship of fibroblast growth factor 21 with subclinical atherosclerosis and cardiovascular events: multi-ethnic study of atherosclerosis [J]. Atherosclerosis, 2019, 287: 46-53.
[32]
闫燕,李金娥,许玉玲,等. 糖尿病肾病维持性血液透析患者FGF21、β-Klotho水平与颈动脉钙化的关系[J]. 中国中西医结合肾病杂志2021, 22(5): 414-417.
[33]
Jiang L, Yin Q, Yang M, et al. Fibroblast growth factor 21 predicts and promotes vascular calcification in haemodialysis patients [J]. Kidney Dis (Basel), 2021, 7(3): 227-240.
[1] 李敏, 杨凡. 肌细胞因子在儿童肥胖症患儿运动减脂中的作用研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 125-131.
[2] 胡敏洁, 王思贤, 王永煜. 人诱导多能干细胞及其在血管相关疾病模型中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 167-175.
[3] 李公豪, 赵艳丽, 彭中兴, 尹德录, 赵云峰. 下调血管生成素样蛋白7表达对血管紧张素Ⅱ介导的血管平滑肌细胞炎症反应的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 93-99.
[4] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[5] 罗珊, 欧三桃. 激活素A在慢性肾脏病血管钙化中的作用机制研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 353-356.
[6] 熊琳, 欧三桃. 慢性肾脏病的"骨-血管轴"的交互因子研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 342-346.
[7] 韦有欣, 邬元平, 陈白生, 邢昌赢. 血清dp-ucMGP水平与维持性血液透析患者血管钙化的相关性研究[J]. 中华肾病研究电子杂志, 2021, 10(06): 311-316.
[8] 于涵, 王保兴. 慢性肾脏病血管钙化的分子机制研究进展[J]. 中华肾病研究电子杂志, 2021, 10(04): 232-235.
[9] 江杰, 李仪, 周红梅, 刘国辉, 郑东文. 血液透析患者血清FGF23水平的影响因素及其与矿物质骨代谢异常的关系研究[J]. 中华肾病研究电子杂志, 2018, 07(03): 111-115.
[10] 魏晓, 欧三桃. 炎症与血管钙化关系的研究进展[J]. 中华肾病研究电子杂志, 2015, 04(05): 265-267.
[11] 周洋, 曹学, 赵飞, 郑波, 查惠娟, 蒋娜, 罗俊, 熊伟. 血清miR-22、HSPB1水平与急性Stanford A型主动脉夹层患者预后的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 243-248.
[12] 姚天成, 王伟杰, 杨莹莹, 郑祥珍, 刘海青, 王炳香. 7,8-二羟基黄酮对自发性高血压大鼠血管平滑肌细胞表型转化的影响[J]. 中华诊断学电子杂志, 2018, 06(03): 202-206.
[13] 张雪, 孟强, 孙琳. 动脉钙化发生机制的研究进展[J]. 中华诊断学电子杂志, 2017, 05(04): 235-239.
[14] 马亚南, 吕滨. 冠状动脉钙化特征在心血管风险评估中的价值[J]. 中华心脏与心律电子杂志, 2022, 10(03): 171-174.
[15] 郑理, 徐勇, 刘妍. 老年慢性肾脏病3~4期患者单核细胞和高密度脂蛋白比值与腹主动脉钙化的关系[J]. 中华老年病研究电子杂志, 2022, 09(03): 6-11.
阅读次数
全文


摘要