切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (06) : 342 -346. doi: 10.3877/cma.j.issn.2095-3216.2022.06.008

综述

慢性肾脏病的"骨-血管轴"的交互因子研究进展
熊琳1, 欧三桃1,()   
  1. 1. 646000 泸州,西南医科大学附属医院肾病内科、四川省肾脏疾病临床医学研究中心
  • 收稿日期:2021-12-31 出版日期:2022-12-28
  • 通信作者: 欧三桃
  • 基金资助:
    核医学与分子影像四川省重点实验室(HYX20010)

Progress of research on bone-vascular axis in chronic kidney disease

Lin Xiong1, Santao Ou1,()   

  1. 1. Department of Nephrology, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Nephrology, Luzhou 646000, Sichuan Province, China
  • Received:2021-12-31 Published:2022-12-28
  • Corresponding author: Santao Ou
引用本文:

熊琳, 欧三桃. 慢性肾脏病的"骨-血管轴"的交互因子研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 342-346.

Lin Xiong, Santao Ou. Progress of research on bone-vascular axis in chronic kidney disease[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(06): 342-346.

矿物质和骨异常(MBD)是慢性肾脏病(CKD)患者常见的并发症,肾性骨病(ROD)和血管钙化(VC)是其重要的临床表现。目前认为VC是血管平滑肌细胞向成骨样细胞或软骨样细胞转分化的主动调节过程,ROD和VC存在相似的发病机制,二者之间可能存在"骨-血管轴"串扰。本文主要就CKD-MBD中ROD和VC的"骨-血管轴"的交互因子做一综述,以期进一步寻找防治CKD-MBD的更佳策略。

Mineral and bone disorder (MBD) is a common complication in patients with chronic kidney disease (CKD). Renal osteodystrophy (ROD) and vascular calcification (VC) are its main clinical manifestations. At present, VC is considered to be an active regulation process of vascular smooth muscle cells transdifferentiation to osteoblast-like cell or chondroid cells. ROD and VC have similar pathogenesis, and there may be a "bone-vascular axis" crosstalk. This article mainly reviewed the related factors of the "bone-vascular axis" in ROD and VC of CKD-MBD, in order to find a better strategy to prevent CKD-MBD.

图1 慢性肾脏病"骨-血管轴"交互因子注:OPG:骨保护素;RANKL:核因子κB配体受体活化因子;RANK:核因子κB受体活化因子;LGR4:亮氨酸重复序列G蛋白偶联受体4;Wnt:无翼型MMTV整合位点;β-catenin:β-连环蛋白;PTH:甲状旁腺激素;BALP:骨特异性碱性磷酸酶
[1]
Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD) [J]. Kidney Int Suppl, 2017, 7(1): 1-59.
[2]
Evenepoel P, Opdebeeck B, David K, et al. Bone-vascular axis in chronic kidney disease [J]. Adv Chronic Kidney Dis, 2019, 26(6): 472-483.
[3]
Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification [J]. Genes Dev, 1998, 12(9): 1260-1268.
[4]
Oštrić M, Kukuljan M, Markić D, et al. Expression of bone-related proteins in vascular calcification and its serum correlations with coronary artery calcification score [J]. J Biol Regul Homeost Agents, 2019, 33(1): 29-38.
[5]
Huang QX, Li JB, Huang N, et al. Elevated osteoprotegerin concentration predicts increased risk of cardiovascular mortality in patients with chronic kidney disease: a systematic review and meta-analysis [J]. Kidney Blood Press Res, 2020, 45(4): 565-575.
[6]
Znorko B, Oksztulska-Kolanek E, Michaowska M, et al. Does the OPG/RANKL system contribute to the bone-vascular axis in chronic kidney disease? a systematic review [J]. Adv Med Sci, 2017, 62(1): 52-64.
[7]
Panizo S, Cardus A, Encinas M, et al. RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway [J]. Circ Res, 2009, 104(9): 1041-1048.
[8]
Lysitska A, Galanis N, Skandalos I, et al. Histology and immunohistochemistry of radial arteries are suggestive of an interaction between calcification and early atherosclerotic lesions in chronic kidney disease [J]. Medicina (Kaunas), 2021, 57(11): 1156.
[9]
Ozkok A, Caliskan Y, Sakaci T, et al. Osteoprotegerin/RANKL axis and progression of coronary artery calcification in hemodialysis patients [J]. Clin J Am Soc Nephrol, 2012, 7(6): 965-973.
[10]
Luo J, Yang Z, Ma Y, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption [J]. Nat Med, 2016, 22(5): 539-546.
[11]
Carrillo-López N, Martínez-Arias L, Alonso-Montes C, et al. The receptor activator of nuclear factor κΒ ligand receptor leucine-rich repeat-containing G-protein-coupled receptor 4 contributes to parathyroid hormone-induced vascular calcification [J]. Nephrol Dial Transplant, 2021, 36(4): 618-631.
[12]
Bisson SK, Ung RV, Mac-Way F. Role of the Wnt/β-catenin pathway in renal osteodystrophy [J]. Int J Endocrinol, 2018, 2018: 5893514.
[13]
De Maré A, Maudsley S, Azmi A, et al. Sclerostin as regulatory molecule in vascular media calcification and the bone-vascular axis [J]. Toxins, 2019, 11(7): 428.
[14]
Pietrzyk B, Wyskida K, Ficek J, et al. Relationship between plasma levels of sclerostin, calcium-phosphate disturbances, established markers of bone turnover, and inflammation in haemodialysis patients [J]. Int Urol Nephrol, 2019, 51(3): 519-526.
[15]
Ferreira AC, Cotovio P, Aires I, et al. The role of bone volume, FGF23 and sclerostin in calcifications and mortality; a cohort study in CKD stage 5 patients [J]. Calcif Tissue Int, 2022, 110(2): 215-224.
[16]
Wang XR, Yuan L, Zhang JJ, et al. Serum sclerostin values are associated with abdominal aortic calcification and predict cardiovascular events in patients with chronic kidney disease stages 3-5D [J]. Nephrology, 2017, 22(4): 286-292.
[17]
De Maré A, Opdebeeck B, Neven E, at al. Sclerostin protects against vascular calcification development in mice [J]. J Bone Miner Res, 2022, 37(4): 687-699.
[18]
Li X, Liu XL, Li X, et al. Dickkopf1 (Dkk1) alleviates vascular calcification by regulating the degradation of phospholipase D1 (PLD1) [J]. J Cardiovasc Transl Res, 2022, 15(6): 1327-1339.
[19]
柴文秀. 腹膜透析患者血清sclerostin和Dickkopf-1与腹主动脉钙化的关联性研究[D].石家庄:河北医科大学,2018.
[20]
Rakipovski G, Rolin B, Barascuk N, et al. A neutralizing antibody against DKK1 does not reduce plaque formation in classical murine models of atherosclerosis: Is the therapeutic potential lost in translation? [J]. Atherosclerosis, 2020, 314: 1-9.
[21]
Benz K, Varga I, Neureiter D, et al. Vascular inflammation and media calcification are already present in early stages of chronic kidney disease [J]. Cardiovasc Pathol, 2017, 27: 57-67.
[22]
Henze LA, Luong TTD, Boehme B, et al. Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells [J]. Aging (Albany NY), 2019, 11(15): 5445-5462.
[23]
Lee HY, Lim S, Park S. Role of inflammation in arterial calcification [J]. Korean Circ J, 2021, 51(2): 114-125.
[24]
Wang Y, Galli M, Shade Silver A, et al. IL1β and TNFα promote RANKL-dependent adseverin expression and osteoclastogenesis [J]. J Cell Sci, 2018, 131(11): jcs213967.
[25]
Farquharson C, Berry JL, Mawer EB, et al. Ascorbic acid-induced chondrocyte terminal differentiation: the role of the extracellular matrix and 1,25-dihydroxyvitamin D [J]. Eur J Cell Biol, 1998, 76(2): 110-118.
[26]
Altaf FM, Hering TM, Kazmi NH, et al. Ascorbate-enhanced chondrogenesis of ATDC5 cells [J]. Eur Cell Mater, 2006, 12(7): 64-70.
[27]
Neven E, Dauwe S, De Broe ME, et al. Endochondral bone formation is involved in media calcification in rats and in men [J]. Kidney Int, 2007, 72(5): 574-581.
[28]
Cozzolino M. Combined effects of ascorbic acid and phosphate on rat VSMC osteoblastic differentiation [J]. Nephrol Dial Transplant, 2012, 27(1): 122-127.
[29]
张萌萌,张秀珍,邓伟民,等. 骨代谢生化指标临床应用专家共识(2020)[J]. 中国骨质疏松杂志2020, 26(6): 781-796.
[30]
McCabe KM, Zelt JG, Kaufmann M, et al. Calcitriol accelerates vascular calcification irrespective of vitamin K status in a rat model of chronic kidney disease with hyperphosphatemia and secondary hyperparathyroidism [J]. J Pharmacol Exp Ther, 2018, 366(3): 433-445.
[31]
Nguyen-Yamamoto L, Tanaka KI, St-Arnaud R, et al. Vitamin D-regulated osteocytic sclerostin and BMP2 modulate uremic extraskeletal calcification [J]. JCI Insight, 2019, 4(13): e126467.
[32]
Zheng Z, Shi H, Jia J, et al. Vitamin D supplementation and mortality risk in chronic kidney disease: a meta-analysis of 20 observational studies [J]. BMC Nephrol, 2013, 14: 199.
[33]
熊琳,朱婷婷,张丽玲,等. 慢性肾病大鼠血管钙化与骨代谢标志物的相关性研究[J]. 中国比较医学杂志2021, 31(1): 87-94.
[34]
Bjørklund G, Svanberg E, Dadar M, et al. The role of matrix Gla protein (MGP) in vascular calcification [J]. Curr Med Chem, 2020, 27(10): 1647-1660.
[35]
Evenepoel P, Claes K, Meijers B, et al. Poor vitamin K status is associated with low bone mineral density and increased fracture risk in end-stage renal disease [J]. J Bone Miner Res, 2019, 34(2): 262-269.
[36]
Delanaye P, Krzesinski JM, Warling X, et al. Dephosphorylated-uncarboxylated matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients [J]. BMC Nephrol, 2014, 15: 145.
[37]
El Borolossy R, El-Farsy MS. The impact of vitamin K2 and native vitamin D supplementation on vascular calcification in pediatric patients on regular hemodialysis. A randomized controlled trial [J]. Eur J Clin Nutr, 2022, 76(6): 848-854.
[38]
Tsai MT, Chen YY, Chang WJ, et al. Warfarin accelerated vascular calcification and worsened cardiac dysfunction in remnant kidney mice [J]. J Chin Med Assoc, 2018, 81(4): 324-330.
[39]
Alappan HR, Kaur G, Manzoor S, et al. Warfarin accelerates medial arterial calcification in humans [J]. Arterioscler Thromb Vasc Biol, 2020, 40(5): 1413-1419.
[40]
Lees JS, Chapman FA, Witham MD, et al. Vitamin K status, supplementation and vascular disease: a systematic review and meta-analysis [J]. Heart, 2019, 105(12): 938-945.
[41]
Cannata-Andía JB, Martín-Carro B, Martín-Vírgala J, et al. Chronic kidney disease-mineral and bone disorders: pathogenesis and management [J]. Calcif Tissue Int, 2021, 108(4): 410-422.
[42]
伍子贤,戴如璋,林少豪,等. 肾性骨病相关分子通路的研究进展[J].中国骨质疏松杂志2020, 26(1): 146-151.
[43]
Sprague SM, Bellorin-Font E, Jorgetti V, et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis [J]. Am J Kidney Dis, 2016, 67(4): 559-566.
[44]
Evenepoel P, Bover J, Torres PU. Parathyroid hormone metabolism and signaling in health and chronic kidney disease [J]. Kidney Int, 2016, 90(6): 1184-1190.
[45]
Cheng SL, Shao JS, Halstead LR, et al. Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/β-catenin signaling and aortic fibrosis in diabetic arteriosclerosis [J]. Circ Res, 2010, 107(2): 271-282.
[46]
Villa-Bellosta R, Egido J. Phosphate, pyrophosphate, and vascular calcification: a question of balance [J]. Eur Heart J, 2017, 38(23): 1801-1804.
[47]
Haarhaus M, Arnqvist HJ, Magnusson P. Calcifying human aortic smooth muscle cells express different bone alkaline phosphatase isoforms, including the novel B1x isoform [J]. J Vasc Res, 2013, 50(2): 167-174.
[48]
Yan J, Li L, Zhang M, et al. Circulating bone-specific alkaline phosphatase and abdominal aortic calcification in maintenance hemodialysis patients [J]. Biomark Med, 2018, 12(11): 1231-1239.
[1] 王丽萍, 徐磊, 蒋天安, 强嘉璘. 微血管成像联合Qpack定量分析技术评估慢性肾脏病患者肾皮质区血流灌注的价值[J]. 中华医学超声杂志(电子版), 2023, 20(03): 292-296.
[2] 杨萍, 许世敏, 李亮亮, 尹向云, 锡洪敏, 马丽丽, 李向红. 早产儿支气管肺发育不良合并代谢性骨病的影响因素[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 202-211.
[3] 罗皓天, 陈丹莹, 王伟财, 周晨. 基质细胞衍生因子1/CXC趋化因子受体4轴在骨免疫相关疾病中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 218-227.
[4] 周川鹏, 杨浩, 魏微阳, 王奇, 黄亚强. 微创与标准通道经皮肾镜治疗肾结石合并肾功能不全的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 470-475.
[5] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[6] 杨长沅, 凌曦淘, 丘伽美, 段若兰, 李琴, 林玉婕, 秦新东, 侯海晶, 卢富华, 苏国彬. 慢性肾脏病患者衰弱的筛查/评估工具研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 229-233.
[7] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[8] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[9] 王诗远, 张爱华. 慢性肾脏病相关认知障碍的发生机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(03): 163-167.
[10] 石晓璟, 苏晓乐, 王利华. 直接口服抗凝药在慢性肾脏病合并心房颤动患者中的应用[J]. 中华肾病研究电子杂志, 2023, 12(01): 26-31.
[11] 罗珊, 欧三桃. 激活素A在慢性肾脏病血管钙化中的作用机制研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 353-356.
[12] 孙雪峰. 肾素-血管紧张素-醛固酮系统抑制剂治疗伴有心力衰竭的慢性肾脏病[J]. 中华肾病研究电子杂志, 2022, 11(06): 301-306.
[13] 刘晓南, 余斌. 细胞衰老在骨代谢及退行性疾病中的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(02): 113-119.
[14] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[15] 李昌艳, 顾芳, 刘娟, 唐明敏. 非布司他治疗慢性肾脏病伴发高尿酸血症的疗效及预后影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(03): 279-284.
阅读次数
全文


摘要