切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (06) : 338 -341. doi: 10.3877/cma.j.issn.2095-3216.2022.06.007

综述

核辐射导致急性肾损伤中铁死亡的作用研究进展
李燕辰1, 李建宁2, 涂晓文1,(), 李峰生3,()   
  1. 1. 100086 北京,锦州医科大学火箭军特色医学中心研究生培养基地;100086 北京,火箭军特色医学中心肾脏病科
    2. 750021 银川,宁夏医科大学生化教研室
    3. 100086 北京,锦州医科大学火箭军特色医学中心研究生培养基地;100086 北京,火箭军特色医学中心科研部实验室
  • 收稿日期:2022-07-25 出版日期:2022-12-28
  • 通信作者: 涂晓文, 李峰生

Progress of research on the role of ferroptosis in acute kidney injury caused by nuclear radiation

Yanchen Li1, Jianning Li2, Xiaowen Tu1,(), Fengsheng Li3,()   

  1. 1. Postgraduate Training Base of Jinzhou Medical University in PLA Rocket Force Characteristic Medical Center, Beijing 100086; Department of Nephrology, PLA Rocket Force Characteristic Medical Center, Beijing 100086
    2. Department of Biochemistry Teaching Research, Ningxia Medical University, Yinchuan 750021, Ningxia Hui Autonomous Region
    3. Postgraduate Training Base of Jinzhou Medical University in PLA Rocket Force Characteristic Medical Center, Beijing 100086; Laboratory of Scientific Research Department, PLA Rocket Force Characteristic Medical Center, Beijing 100086; China
  • Received:2022-07-25 Published:2022-12-28
  • Corresponding author: Xiaowen Tu, Fengsheng Li
引用本文:

李燕辰, 李建宁, 涂晓文, 李峰生. 核辐射导致急性肾损伤中铁死亡的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 338-341.

Yanchen Li, Jianning Li, Xiaowen Tu, Fengsheng Li. Progress of research on the role of ferroptosis in acute kidney injury caused by nuclear radiation[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(06): 338-341.

近年来铁死亡与急性肾损伤(AKI)关系的研究不断深入,但是铁死亡在核辐射导致的AKI中发挥作用的分子生物学机制尚未阐明。本文综述了铁死亡在核辐射所致AKI生物学过程中的作用研究进展,以便为防治核辐射所致AKI寻找潜在的检测手段和治疗靶点。

In recent years, the research on the relationship between ferroptosis and acute kidney injury (AKI) has been deepening, but the molecular biological mechanism of ferroptosis in AKI caused by nuclear radiation has not been clarified. This article reviewed the progress of research on the role of ferroptosis in the biological process of AKI induced by nuclear radiation so as to look for the potential detection methods and therapeutic targets for treating AKI induced by nuclear radiation.

表1 核辐射肾损伤临床表现[27]
[1]
Gonsalez SR, Cortes AL, Silva RCD, et al. Acute kidney injury overview: from basic findings to new prevention and therapy strategies [J]. Pharmacol Ther, 2019, 200: 1-12.
[2]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death [J]. Cell, 2012, 149(5): 1060-1072.
[3]
Feng Q, Yu X, Qiao Y, et al. Ferroptosis and acute kidney injury (AKI): molecular mechanisms and therapeutic potentials [J]. Front Pharmacol, 2022, 13: 858676.
[4]
Doll S, Conrad M. Iron and ferroptosis: a still ill-defined liaison [J]. IUBMB Life, 2017, 69(6): 423-434.
[5]
Li S, Zheng L, Liu X, et al. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy [J]. Free Radic Biol Med, 2021, 162(1): 435-449.
[6]
Zhang X, Li X. Abnormal iron and lipid mediated ferroptosis in kidney diseases and its therapeutic potential [J]. Metabolites, 2022, 12(1): 58.
[7]
Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis [J].FEBS J, 2022, 289(22): 7038-7050.
[8]
Chen Y, Liu Y, Lan T, et al. Quantitative profiling of protein carbonylations in ferroptosis by an aniline-derived probe [J]. J Am Chem Soc, 2018, 140(13): 4712-4720.
[9]
Li M, Wang X, Lu S, et al. Erastin triggers autophagic death of breast cancer cells by increasing intracellular iron levels [J]. Oncol Lett, 2020, 20(4): 57.
[10]
Liang C, Zhang X, Yang M, et al. Recent progress in ferroptosis inducer for cancer therapy [J]. Adv Mater, 2019, 31(51): e1904197.
[11]
Miotto G, Rossetto M, Di Paolo ML, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1 [J]. Redox Biol, 2020, 28: 101328.
[12]
Martin-Sanchez D, Ruiz-Andres O, Poveda J, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI [J]. J Am Soc Nephrol, 2017, 28(1): 218-229.
[13]
Liu P, Feng Y, Li H, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis [J]. Cell Mol Biol Lett, 2020, 25: 10.
[14]
Ndisang JF. Synergistic interaction between heme oxygenase (HO) and nuclear-factor E2- related factor-2 (Nrf2) against oxidative stress in cardiovascular related diseases [J]. Curr Pharm Des, 2017, 23(10): 1465-1470.
[15]
罗连鑫,周芳芳,罗群. 铁死亡在急性肾损伤中研究进展[J]. 中华肾脏病杂志2021, 37(4): 375-379.
[16]
Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice [J]. Nat Cell Biol, 2014, 16(12): 1180-1191.
[17]
赵天元,吴言,闵柠柠,等. 铁死亡在急性肾损伤中的作用机制及治疗应用[J]. 生物科学进展2020, 51(1): 36-40.
[18]
任红旗,唐政. 放射性肾病[J]. 医学研究生报2007, 20(8): 873-877.
[19]
Mostaghimi S, Mehrvar S, Foomani FH, et al. Vascular regression in the kidney: changes in 3D vessel structure with time post-irradiation [J]. Biomed Opt Express, 2022, 13(8): 4338-4352.
[20]
郭爱华,孟建中. 重视防治电离辐射导致的急性肾损伤[J]. 中国血液净化2010, 9(6): 333-335.
[21]
Breitz H. Clinical aspects of radiation nephropathy [J]. Cancer Biother Radiopharm, 2004, 19(3): 359-362.
[22]
Ki Y, Kim W, Kim YH, et al. Effect of coenzyme Q10 on radiation nephropathy in rats [J]. J Korean Med Sci, 2017, 32(5): 757-763.
[23]
Ma N, Kato T, Isogai T, et al. The potential effects of taurine in mitigation of radiation nephropathy [J]. Adv Exp Med Biol, 2019, 1155: 497-505.
[24]
Quarmby S, Hunter RD, Kumar S. Irradiation induced expression of CD31, ICAM-1 and VCAM-1 in human microvascular endothelial cells [J]. Anticancer Res, 2000, 20(5B): 3375-3381.
[25]
高林峰,王洪复,朱飞鹏. 电离辐射肾损伤病理特点及其机理研究[J]. 中华放射医学与防护杂志2004, 24(5): 430-432.
[26]
Cohen EP, Bonsib SA, Whitehouse E, et al. Mediators and mechanisms of radiation nephropathy [J]. Proc Soc Exp Biol Med, 2000, 223(2): 218-225.
[27]
Dawson LA, Kavanagh BD, Paulino AC, et al. Radiation-associated kidney injury [J]. Int J Radiat Oncol Biol Phys, 2010, 76(3 Suppl): S108-S115.
[28]
Talebpour Amiri F, Hamzeh M, Naeimi RA, et al. Radioprotective effect of atorvastatin against ionizing radiation-induced nephrotoxicity in mice [J]. Int J Radiat Biol, 2018, 94(2): 106-113.
[29]
乔予希,王博,薛武军,等. 急性肾损伤过程中铁死亡的研究进展[J]. 器官移植2020, 11(6): 671-676.
[30]
Guo XW, Zhang H, Wang SN, et al. PIEZO1 ion channel mediates ionizing radiation-induced pulmonary endothelial cell ferroptosis via Ca2+/calpain/VE-cadherin signaling [J]. Front Mol Biosci, 2021, 8: 725274.
[31]
Lei G, Zhang YL, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression [J]. Cell Res, 2020, 30(2): 146-162.
[32]
Ye LF, Chaudhary KR, Zandkarimi F, et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers [J]. ACS Chem Biol, 2020, 15(2): 469-484.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[3] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[4] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[5] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[6] 孙文琦, 吴欣荣, 王运荣, 赵贝, 窦晓坛, 李雯, 邹晓平, 王雷, 陈敏. 结直肠上皮细胞ROS及FH检测对结直肠癌筛查的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 326-330.
[7] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[8] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[9] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[10] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[11] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[12] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[13] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[14] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[15] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
阅读次数
全文


摘要