切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (06) : 332 -337. doi: 10.3877/cma.j.issn.2095-3216.2022.06.006

论著

血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析
吴震宇1,(), 胡亚芬1, 董晓芬1, 马远方1   
  1. 1. 102600 首都医科大学大兴教学医院内分泌科
  • 收稿日期:2022-05-12 出版日期:2022-12-28
  • 通信作者: 吴震宇

Predictive values of serum CTGF, TGF-β1 and MMP2 levels on renal interstitial fibrosis in diabetes nephropathy

Zhenyu Wu1,(), Yafen Hu1, Xiaofen Dong1, Yuanfang Ma1   

  1. 1. Department of Endocrinology, Daxing Teaching Hospital of Capital Medical University, Beijing 102600, China
  • Received:2022-05-12 Published:2022-12-28
  • Corresponding author: Zhenyu Wu
引用本文:

吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J/OL]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.

Zhenyu Wu, Yafen Hu, Xiaofen Dong, Yuanfang Ma. Predictive values of serum CTGF, TGF-β1 and MMP2 levels on renal interstitial fibrosis in diabetes nephropathy[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(06): 332-337.

目的

分析血清结缔组织生长因子(CTGF)、转化生长因子-β1(TGF-β1)、基质金属蛋白酶2(MMP2)水平对糖尿病肾病肾间质纤维化的预测价值。

方法

纳入2017年1月至2019年2月本院收治的172例糖尿病肾病患者设为研究组,同期在我院体检的150例健康体检者设为对照组。检测并对比两组的血清CTGF、TGF-β1、MMP2水平。随访3年,根据肾间质纤维化的发生情况将研究组患者分为发生组和未发生组。采用Logistic回归分析法分析血清CTGF、TGF-β1、MMP2水平与糖尿病肾病肾间质纤维化的关系。采用受试者操作特征(ROC)曲线分析血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测价值。

结果

研究组肾间质纤维化的发生率为39.53%。与未发生组比较,发生组血清CTGF、TGF-β1水平升高(P<0.05)、血清MMP2水平降低(P<0.05)。年龄≥60岁、高血压、尿微量白蛋白/尿肌酐≥3.12 mg/mmol、糖化血红蛋白≥8.38%、血肌酐≥143.78 μmol/L以及CTGF≥93.99 ng/L、TGF-β1≥80.67 μg/L均是糖尿病肾病肾间质纤维化的危险因素(P<0.05),血清MMP2水平>99.03 μg/L是其保护因素(P<0.05)。血清CTGF、TGF-β1、MMP2水平联合预测的灵敏度、特异度、曲线下面积(AUC)分别是95.59%、78.85%、0.943,联合预测的灵敏度和AUC均高于单独预测(P<0.05),特异度与单独预测差异无统计学意义(P>0.05)。

结论

糖尿病肾病患者血清的CTGF、TGF-β1和MMP2水平均为糖尿病肾病肾间质纤维化的影响因素,对肾间质纤维化发生可能具有一定的预测价值,且其联合预测优于单独预测。

Objective

To explore the predictive values of serum connective tissue growth factor (CTGF), transforming growth factor-β1 (TGF-β1) and matrix metalloproteinase 2 (MMP2) levels on renal interstitial fibrosis in diabetes nephropathy.

Methods

172 patients with diabetes nephropathy admitted to our hospital from January 2017 to February 2019 were included as the research group, and 150 healthy persons who received physical examination in our hospital during the same period were included as the control group. The levels of serum CTGF, TGF-β1, and MMP2 in the two groups were detected and compared. Follow-up lasted for three years, and the patients in the research group were further divided into occurrence group and non-occurrence group according to the situation of renal interstitial fibrosis. The relationships between serum CTGF, TGF-β1 and MMP2 levels and renal interstitial fibrosis in diabetes nephropathy were analyzed with logistic regression method. The receiver operating characteristic (ROC) curve was used to analyze the predictive values of serum CTGF, TGF-β1, and MMP2 levels on renal interstitial fibrosis in diabetes nephropathy.

Results

The incidence of renal interstitial fibrosis was 39.53%. The levels of serum CTGF and TGF-β1 in the occurrence group were higher than those in the non-occurrence group (P< 0.05), and the level of serum MMP2 was lower than that in the non-occurrence group (P< 0.05). Age≥60 years, hypertension, urinary microalbumin / creatinine ratio (ACR) ≥3.12 mg/mmol, glycosylated hemoglobin (HbA1c) ≥8.38%, serum creatinine (Scr) ≥143.78 μmol/L, serum CTGF≥93.99 ng/L, and TGF-β1≥80.67 μg/L, were risk factors for the renal interstitial fibrosis in diabetes nephropathy (P<0.05), while serum MMP2>99.03 μg/L was the protective factor (P<0.05). The sensitivity, specificity, and area under curve (AUC) of combined prediction of serum CTGF, TGF-β1, and MMP2 levels were 95.59%, 78.85%, and 0.943, respectively. The sensitivity and AUC of combined prediction were higher than those of single prediction (P< 0.05), while there was no significant difference between the combined prediction and the single prediction in the specificity (P> 0.05).

Conclusion

The three indexes of CTGF, TGF-β1, and MMP2 were all the influencing factors of renal interstitial fibrosis in diabetes nephropathy, suggesting that they may have a certain predictive value for the occurrence of renal interstitial fibrosis. Their combined prediction value was higher than that of a single index.

表1 研究组与对照组的血清CTGF、TGF-β1、MMP2水平对比(±s)
表2 发生组与未发生组的血清CTGF、TGF-β1、MMP2水平对比(±s)
表3 发生组与未发生组的资料对比
表4 糖尿病肾病患者肾间质纤维化影响因素的Logistic回归分析
表5 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析
图1 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测ROC曲线注:CTGF:结缔组织生长因子;TGF-β1:转化生长因子-β1;MMP2:基质金属蛋白酶2
[1]
Sagoo MK, Gnudi L. Diabetic nephropathy: an overview [J]. Methods Mol Biol, 2020, 206(7): 3-7.
[2]
Zhang XX, Kong J, Yun K. Prevalence of diabetic nephropathy among patients with type 2 diabetes mellitus in China: a meta-analysis of observational studies [J]. J Diabetes Res, 2020, 23(2): 231-236.
[3]
Misra PS, Szeto SG, Krizova A, et al. Renal histology in diabetic nephropathy predicts progression to end-stage kidney disease but not the rate of renal function decline [J]. BMC Nephrol, 2020, 21(1): 285-289.
[4]
Gwon MG, An HJ, Gu H, et al. Apamin inhibits renal fibrosis via suppressing TGF-β1 and STAT3 signaling in vivo and in vitro [J]. J Mol Med (Berl), 2021, 99(9): 1265-1277.
[5]
Alaee M, Amri J, Karami H, et al. Allium jesdianum hydro alcoholic extract ameliorates diabetic nephropathy by suppressing connective tissue growth factor (CTGF) and receptor for advanced glycation end products (RAGE) gene expression in diabetic rats with streptozotocin [J]. Horm Mol Biol Clin Investig, 2021, 42(2): 167-174.
[6]
Yu XA, Hu Y, Zhang Y, et al. Integrating the polydopamine nanosphere/aptamers nanoplatform with a DNase-I-assisted recycling amplification strategy for simultaneous detection of MMP-9 and MMP-2 during renal interstitial fibrosis [J]. ACS Sens, 2020, 5(4): 1119-1125.
[7]
中华医学会内分泌学分会. 中国成人糖尿病肾脏病临床诊断的专家共识[J]. 中华内分泌代谢杂志2015, 31(5): 379-385.
[8]
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2013年版)[J]. 中华糖尿病杂志2014, 6(7): 447-498.
[9]
张威,朱小兰,王朝杰,等. 改良Masson染色法在肾穿刺活检组织染色中的应用[J].中华病理学杂志2005, 34(6): 375-376.
[10]
Balderas-Vargas NA, Legorreta-Soberanis J, Paredes-Solís S, et al. Occult renal failure and associated factors in patients with chronic conditions [J]. Gac Med Mex, 2020, 156(1): 11-16.
[11]
Nelson RG, Knowler WC, McCance DR, et al. Determinants of end-stage renal disease in Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus and proteinuria [J]. Diabetologia, 1993, 36(10): 1087-1093.
[12]
Cao D, Wang Y, Zhang Y, et al. Regulation of connective tissue growth factor expression by miR-133b for the treatment of renal interstitial fibrosis in aged mice with unilateral ureteral obstruction [J]. Stem Cell Res Ther, 2021, 12(1): 171-176.
[13]
Yang K, Fan B, Zhao Q, et al. Hirudin ameliorates renal interstitial fibrosis via regulating TGF-β1/Smad and NF-κB signaling in UUO rat model [J]. Evid Based Complement Alternat Med, 2020, 20(3): 729-735.
[14]
Cheng Z, Liu L, Wang Z, et al. Hypoxia activates Src and promotes endocytosis which decreases MMP-2 activity and aggravates renal interstitial fibrosis [J]. Int J Mol Sci, 2018, 19(2): 581-587.
[15]
杨敏,黄海长,李惊子,等. 结缔组织生长因子协同转化生长因子β1的促肾纤维化效应[J]. 中华医学杂志2004, 84(7): 569-573.
[16]
An S, Li Y, Jia X, et al. Ponicidin attenuates streptozotocin-induced diabetic nephropathy in rats via modulating hyperlipidemia, oxidative stress, and inflammatory markers [J]. J Biochem Mol Toxicol, 2022, 36(4): e22988.
[17]
Abene EE, Gimba ZM, Edah JO, et al. Blood pressure control and kidney damage in hypertension: Results of a three-center cross-sectional study in North Central Nigeria [J]. Niger J Clin Pract, 2020, 23(11): 1590-1597.
[18]
Ko GJ, Rhee CM, Kalantar-Zadeh K, et al. The effects of high-protein diets on kidney health and longevity [J]. J Am Soc Nephrol, 2020, 31(8): 1667-1679.
[19]
Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy [J]. Int J Mol Sci, 2020, 21(8): 280-286.
[1] 诸琴红, 夏典平, 葛芳娣, 崔大伟. 抗氧化和炎症指标在糖尿病肾病患者中的临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 307-311.
[2] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[3] 中华医学会器官移植学分会, 中国医疗保健国际交流促进会肾脏移植学分会. 中国胰肾联合移植临床诊疗指南[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 129-147.
[4] 梁丽斯, 李洁, 贺帅, 来艳君, 刘铭, 张琳. MMP-9、MMP-2 及TLR4、HE4对非小细胞肺癌早期诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 756-761.
[5] 周璇, 谢莉, 邹娟. 尼达尼布对特发性肺纤维化肺功能、肺纤维化程度及PDGF、PGE2、TGF-β1的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 368-372.
[6] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[7] 王静, 丁红. 益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1、α-平滑肌肌动蛋白表达的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 161-165.
[8] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[9] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[10] 白璐, 李青霞, 冯一卓, 刘雪倩, 刘若琪, 曲卓敏, 赵凌霞. 丁酸盐治疗糖尿病肾病的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 303-308.
[11] 谭莹, 朱鹏飞, 李楠, 黄莉吉, 周希乔, 严倩华, 余江毅. 火把花根片联合黄葵胶囊治疗高或极高进展风险糖尿病肾病的临床探索[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 171-177.
[12] 黄莉吉, 王婷, 朱鹏飞, 刘敬顺, 余江毅, 谢绍锋. 芪葵颗粒联合火把花根片对G3A3期糖尿病肾病的疗效及对血清miRNA-21的影响[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1247-1252.
[13] 邬秋俊, 向茜. 甘油三酯-葡萄糖指数与2型糖尿病微血管并发症相关性的研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(10): 1109-1112.
[14] 刘聪辉, 何浩然, 黄一诺, 张凤, 王凡月, 郝翰. 膳食铜补充对大鼠心肌梗死后心肌基质金属蛋白酶2表达水平及血流动力学的影响[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 166-172.
[15] 张梅, 陈卉, 李转霞, 王瑞, 李林娟. Metrnl和NLRP3炎症小体:糖尿病肾病的潜在诊断标志物[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 193-199.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?