切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (06) : 332 -337. doi: 10.3877/cma.j.issn.2095-3216.2022.06.006

论著

血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析
吴震宇1,(), 胡亚芬1, 董晓芬1, 马远方1   
  1. 1. 102600 首都医科大学大兴教学医院内分泌科
  • 收稿日期:2022-05-12 出版日期:2022-12-28
  • 通信作者: 吴震宇

Predictive values of serum CTGF, TGF-β1 and MMP2 levels on renal interstitial fibrosis in diabetes nephropathy

Zhenyu Wu1,(), Yafen Hu1, Xiaofen Dong1, Yuanfang Ma1   

  1. 1. Department of Endocrinology, Daxing Teaching Hospital of Capital Medical University, Beijing 102600, China
  • Received:2022-05-12 Published:2022-12-28
  • Corresponding author: Zhenyu Wu
引用本文:

吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.

Zhenyu Wu, Yafen Hu, Xiaofen Dong, Yuanfang Ma. Predictive values of serum CTGF, TGF-β1 and MMP2 levels on renal interstitial fibrosis in diabetes nephropathy[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(06): 332-337.

目的

分析血清结缔组织生长因子(CTGF)、转化生长因子-β1(TGF-β1)、基质金属蛋白酶2(MMP2)水平对糖尿病肾病肾间质纤维化的预测价值。

方法

纳入2017年1月至2019年2月本院收治的172例糖尿病肾病患者设为研究组,同期在我院体检的150例健康体检者设为对照组。检测并对比两组的血清CTGF、TGF-β1、MMP2水平。随访3年,根据肾间质纤维化的发生情况将研究组患者分为发生组和未发生组。采用Logistic回归分析法分析血清CTGF、TGF-β1、MMP2水平与糖尿病肾病肾间质纤维化的关系。采用受试者操作特征(ROC)曲线分析血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测价值。

结果

研究组肾间质纤维化的发生率为39.53%。与未发生组比较,发生组血清CTGF、TGF-β1水平升高(P<0.05)、血清MMP2水平降低(P<0.05)。年龄≥60岁、高血压、尿微量白蛋白/尿肌酐≥3.12 mg/mmol、糖化血红蛋白≥8.38%、血肌酐≥143.78 μmol/L以及CTGF≥93.99 ng/L、TGF-β1≥80.67 μg/L均是糖尿病肾病肾间质纤维化的危险因素(P<0.05),血清MMP2水平>99.03 μg/L是其保护因素(P<0.05)。血清CTGF、TGF-β1、MMP2水平联合预测的灵敏度、特异度、曲线下面积(AUC)分别是95.59%、78.85%、0.943,联合预测的灵敏度和AUC均高于单独预测(P<0.05),特异度与单独预测差异无统计学意义(P>0.05)。

结论

糖尿病肾病患者血清的CTGF、TGF-β1和MMP2水平均为糖尿病肾病肾间质纤维化的影响因素,对肾间质纤维化发生可能具有一定的预测价值,且其联合预测优于单独预测。

Objective

To explore the predictive values of serum connective tissue growth factor (CTGF), transforming growth factor-β1 (TGF-β1) and matrix metalloproteinase 2 (MMP2) levels on renal interstitial fibrosis in diabetes nephropathy.

Methods

172 patients with diabetes nephropathy admitted to our hospital from January 2017 to February 2019 were included as the research group, and 150 healthy persons who received physical examination in our hospital during the same period were included as the control group. The levels of serum CTGF, TGF-β1, and MMP2 in the two groups were detected and compared. Follow-up lasted for three years, and the patients in the research group were further divided into occurrence group and non-occurrence group according to the situation of renal interstitial fibrosis. The relationships between serum CTGF, TGF-β1 and MMP2 levels and renal interstitial fibrosis in diabetes nephropathy were analyzed with logistic regression method. The receiver operating characteristic (ROC) curve was used to analyze the predictive values of serum CTGF, TGF-β1, and MMP2 levels on renal interstitial fibrosis in diabetes nephropathy.

Results

The incidence of renal interstitial fibrosis was 39.53%. The levels of serum CTGF and TGF-β1 in the occurrence group were higher than those in the non-occurrence group (P< 0.05), and the level of serum MMP2 was lower than that in the non-occurrence group (P< 0.05). Age≥60 years, hypertension, urinary microalbumin / creatinine ratio (ACR) ≥3.12 mg/mmol, glycosylated hemoglobin (HbA1c) ≥8.38%, serum creatinine (Scr) ≥143.78 μmol/L, serum CTGF≥93.99 ng/L, and TGF-β1≥80.67 μg/L, were risk factors for the renal interstitial fibrosis in diabetes nephropathy (P<0.05), while serum MMP2>99.03 μg/L was the protective factor (P<0.05). The sensitivity, specificity, and area under curve (AUC) of combined prediction of serum CTGF, TGF-β1, and MMP2 levels were 95.59%, 78.85%, and 0.943, respectively. The sensitivity and AUC of combined prediction were higher than those of single prediction (P< 0.05), while there was no significant difference between the combined prediction and the single prediction in the specificity (P> 0.05).

Conclusion

The three indexes of CTGF, TGF-β1, and MMP2 were all the influencing factors of renal interstitial fibrosis in diabetes nephropathy, suggesting that they may have a certain predictive value for the occurrence of renal interstitial fibrosis. Their combined prediction value was higher than that of a single index.

表1 研究组与对照组的血清CTGF、TGF-β1、MMP2水平对比(±s)
表2 发生组与未发生组的血清CTGF、TGF-β1、MMP2水平对比(±s)
表3 发生组与未发生组的资料对比
表4 糖尿病肾病患者肾间质纤维化影响因素的Logistic回归分析
表5 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析
图1 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测ROC曲线注:CTGF:结缔组织生长因子;TGF-β1:转化生长因子-β1;MMP2:基质金属蛋白酶2
[1]
Sagoo MK, Gnudi L. Diabetic nephropathy: an overview [J]. Methods Mol Biol, 2020, 206(7): 3-7.
[2]
Zhang XX, Kong J, Yun K. Prevalence of diabetic nephropathy among patients with type 2 diabetes mellitus in China: a meta-analysis of observational studies [J]. J Diabetes Res, 2020, 23(2): 231-236.
[3]
Misra PS, Szeto SG, Krizova A, et al. Renal histology in diabetic nephropathy predicts progression to end-stage kidney disease but not the rate of renal function decline [J]. BMC Nephrol, 2020, 21(1): 285-289.
[4]
Gwon MG, An HJ, Gu H, et al. Apamin inhibits renal fibrosis via suppressing TGF-β1 and STAT3 signaling in vivo and in vitro [J]. J Mol Med (Berl), 2021, 99(9): 1265-1277.
[5]
Alaee M, Amri J, Karami H, et al. Allium jesdianum hydro alcoholic extract ameliorates diabetic nephropathy by suppressing connective tissue growth factor (CTGF) and receptor for advanced glycation end products (RAGE) gene expression in diabetic rats with streptozotocin [J]. Horm Mol Biol Clin Investig, 2021, 42(2): 167-174.
[6]
Yu XA, Hu Y, Zhang Y, et al. Integrating the polydopamine nanosphere/aptamers nanoplatform with a DNase-I-assisted recycling amplification strategy for simultaneous detection of MMP-9 and MMP-2 during renal interstitial fibrosis [J]. ACS Sens, 2020, 5(4): 1119-1125.
[7]
中华医学会内分泌学分会. 中国成人糖尿病肾脏病临床诊断的专家共识[J]. 中华内分泌代谢杂志2015, 31(5): 379-385.
[8]
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2013年版)[J]. 中华糖尿病杂志2014, 6(7): 447-498.
[9]
张威,朱小兰,王朝杰,等. 改良Masson染色法在肾穿刺活检组织染色中的应用[J].中华病理学杂志2005, 34(6): 375-376.
[10]
Balderas-Vargas NA, Legorreta-Soberanis J, Paredes-Solís S, et al. Occult renal failure and associated factors in patients with chronic conditions [J]. Gac Med Mex, 2020, 156(1): 11-16.
[11]
Nelson RG, Knowler WC, McCance DR, et al. Determinants of end-stage renal disease in Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus and proteinuria [J]. Diabetologia, 1993, 36(10): 1087-1093.
[12]
Cao D, Wang Y, Zhang Y, et al. Regulation of connective tissue growth factor expression by miR-133b for the treatment of renal interstitial fibrosis in aged mice with unilateral ureteral obstruction [J]. Stem Cell Res Ther, 2021, 12(1): 171-176.
[13]
Yang K, Fan B, Zhao Q, et al. Hirudin ameliorates renal interstitial fibrosis via regulating TGF-β1/Smad and NF-κB signaling in UUO rat model [J]. Evid Based Complement Alternat Med, 2020, 20(3): 729-735.
[14]
Cheng Z, Liu L, Wang Z, et al. Hypoxia activates Src and promotes endocytosis which decreases MMP-2 activity and aggravates renal interstitial fibrosis [J]. Int J Mol Sci, 2018, 19(2): 581-587.
[15]
杨敏,黄海长,李惊子,等. 结缔组织生长因子协同转化生长因子β1的促肾纤维化效应[J]. 中华医学杂志2004, 84(7): 569-573.
[16]
An S, Li Y, Jia X, et al. Ponicidin attenuates streptozotocin-induced diabetic nephropathy in rats via modulating hyperlipidemia, oxidative stress, and inflammatory markers [J]. J Biochem Mol Toxicol, 2022, 36(4): e22988.
[17]
Abene EE, Gimba ZM, Edah JO, et al. Blood pressure control and kidney damage in hypertension: Results of a three-center cross-sectional study in North Central Nigeria [J]. Niger J Clin Pract, 2020, 23(11): 1590-1597.
[18]
Ko GJ, Rhee CM, Kalantar-Zadeh K, et al. The effects of high-protein diets on kidney health and longevity [J]. J Am Soc Nephrol, 2020, 31(8): 1667-1679.
[19]
Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy [J]. Int J Mol Sci, 2020, 21(8): 280-286.
[1] 乔雨晴, 沈磊, 周林香, 李湘杰, 严博. 结缔组织生长因子单克隆抗体对小鼠慢性结肠炎肠壁纤维化的作用[J]. 中华结直肠疾病电子杂志, 2023, 12(02): 125-131.
[2] 蒋梦洁, 钱治军, 徐思, 梁伟. 低强度脉冲超声波治疗冻结肩模型兔的实验研究[J]. 中华肩肘外科电子杂志, 2023, 11(01): 30-34.
[3] 刘一, 文旖旎, 吴映辉. 过敏性紫癜患儿外周血辅助性T细胞、调节性T细胞细胞因子与肾损害的相关性分析[J]. 中华肾病研究电子杂志, 2023, 12(05): 271-275.
[4] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[5] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[6] 尹丽丽, 管陈, 赵龙, 蒋伟, 秦振志, 李宸羽, 徐岩. 虾青素通过CCN1调节肾间质纤维化的潜在分子作用机制[J]. 中华肾病研究电子杂志, 2022, 11(06): 318-326.
[7] 雷建东, 吴林军, 季沙, 蒋志敏. 糖尿病肾病维持性血液透析患者低血糖预测模型及评分量表的建立[J]. 中华肾病研究电子杂志, 2022, 11(06): 311-317.
[8] 徐新丽, 于小勇. 表观遗传——中医药治疗糖尿病肾病新视角[J]. 中华肾病研究电子杂志, 2022, 11(05): 276-280.
[9] 贾英民, 张术姣, 耿运玲, 曹梓静, 王耀献, 吕仁和, 刘玉宁, 刘伟敬. 蝉花菌丝联合海昆肾喜胶囊对糖尿病肾小管上皮细胞自噬-溶酶体通路的影响[J]. 中华肾病研究电子杂志, 2022, 11(04): 212-218.
[10] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[11] 朱艺平, 陈一平, 赵艳英, 陆玮玮, 牙侯军, 苏复霞. 二十味沉香丸调控糖尿病肾病大鼠肠道菌群益生菌构成的机制研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 572-578.
[12] 刘倩影, 刘雪彦, 周佩如, 胡申玲, 叶倩呈, 黄洁微. 糖尿病肾病患者血液透析期间低血糖管理的证据总结[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 22-27.
[13] 王慧卿, 李银玉, 张继敏, 黄正丽, 孙喜明, 薛少青, 焦爱富, 赵慧媛, 尉杰忠. 血清adipsin及皮下脂肪面积与早期糖尿病肾病的相关性分析[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 256-262.
[14] 沈地, 权莉, 梁存禹, 孟齐, 艾比拜·玉素甫. 葡萄糖目标范围内时间与2型糖尿病患者尿微量白蛋白水平的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 249-255.
[15] 何圣清, 袁唯唯, 孟莞瑞, 符青松, 郑晓斌, 武红梅. 达格列净联合二甲双胍治疗对早期2型糖尿病肾病患者肾小管功能和血清Klotho的影响[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 236-242.
阅读次数
全文


摘要