切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (05) : 276 -280. doi: 10.3877/cma.j.issn.2095-3216.2022.05.006

综述

表观遗传——中医药治疗糖尿病肾病新视角
徐新丽1, 于小勇1,()   
  1. 1. 710000 陕西省中医医院
  • 收稿日期:2021-08-18 出版日期:2022-10-28
  • 通信作者: 于小勇
  • 基金资助:
    国家自然科学基金面上项目(82174366); 陕西省科技厅青年项目(2022JQ-786)

Epigenetics: a new perspective of traditional Chinese medicine in the treatment of diabetic kidney disease

Xinli Xu1, Xiaoyong Yu1,()   

  1. 1. Shaanxi Provincial Hospital of Chinese Medicine, Xi′an 710000, Shaanxi Province, China
  • Received:2021-08-18 Published:2022-10-28
  • Corresponding author: Xiaoyong Yu
引用本文:

徐新丽, 于小勇. 表观遗传——中医药治疗糖尿病肾病新视角[J]. 中华肾病研究电子杂志, 2022, 11(05): 276-280.

Xinli Xu, Xiaoyong Yu. Epigenetics: a new perspective of traditional Chinese medicine in the treatment of diabetic kidney disease[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(05): 276-280.

糖尿病肾病(DKD)是糖尿病主要微血管并发症之一,近50%的糖尿病患者并发肾损害。随着全球糖尿病人口的增加,DKD已成为终末期肾脏疾病(ESRD)的主要原因,并与糖尿病患者的死亡率密切相关。表观遗传是一种DNA序列不发生变化而表型发生改变的可逆性遗传方式,在糖尿病肾病的发病中具有重要作用。中医药在慢性病治疗上有其独特优势,近期研究发现某些治疗DKD的重要单体和复方药物对DNA甲基化、组蛋白乙酰化及微小RNA表达均有调节作用。本文综述了近年来有关DKD表观遗传的研究进展,并探讨了中药治疗DKD的潜在机制和应用前景。

Diabetic kidney disease (DKD) is one of the main microvascular complications of diabetes, and nearly 50% of diabetic patients suffer from renal damage. With the increase of diabetic population worldwide, DKD has become a major cause of end-stage renal disease (ESRD), and is closely related to the mortality of diabetic patients. Epigenetics is a reversible genetic pattern in which the DNA sequence does not change but the phenotype changes. Epigenetics plays an important role in the pathogenesis of DKD. Traditional Chinese medicine has its unique advantages in the treatment of chronic diseases. Recent studies have found that some important monomeric and compound drugs in the treatment of DKD could regulate DNA methylation, histone acetylation, and microRNA expression. This artilce reviewed recent progress of research on the epigenetics of DKD, and discussed the potential mechanism and application prospects of traditional Chinese medicine for the treatment of DKD.

表1 糖尿病肾病在表观遗传学上相关的基因研究
表2 中医药治疗糖尿病肾病在表观遗传学上相关基因的研究
[1]
Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045 [J]. Diabetes Res Clin Pract, 2018, 138: 271-281.
[2]
Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China [J]. N Engl J Med, 2016, 375(9): 905-906.
[3]
Yamazaki T, Mimura I, Tanaka T, et al. Treatment of diabetic kidney disease: current and future [J]. Diabetes Metab J, 2021, 45(1): 11-26.
[4]
Nathan DMCleary PABacklund JY,et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes [J].N Engl J Med, 2005, 353(25): 2643-2653.
[5]
Bird A. Perceptions of epigenetics [J]. Nature, 2007, 447(7143): 396-398.
[6]
Kushwaha K, Sharma S, Gupta J. Metabolic memory and diabetic nephropathy: beneficial effects of natural epigenetic modifiers [J]. Biochimie, 2020, 170: 140-151.
[7]
Goru SK, Gaikwad AB. Novel reno-protective mechanism of aspirin involves H2AK119 monoubiquitination and Set7 in preventing type 1 diabetic nephropathy [J]. Pharmacol Rep, 2018, 70(3): 497-502.
[8]
Tikoo K, Kumar P, Gupta J. Rosiglitazone synergizes anticancer activity of cisplatin and reduces its nephrotoxicity in 7, 12-dimethyl benz{a}anthracene (DMBA) induced breast cancer rats [J]. BMC Cancer, 2009, 9: 107.
[9]
Bechtel W, McGoohan S, Zeisberg EM, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney [J]. Nat Med, 2010, 16(5): 544-550.
[10]
Tampe B, Tampe D, Müller CA, et al. Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis [J]. J Am Soc Nephrol, 2014, 25(5): 905-912.
[11]
Hayashi K, Sasamura H, Nakamura M, et al. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria [J]. J Clin Invest, 2014, 124(6): 2523-2537.
[12]
Sharma I, Dutta RK, Singh NK, et al. High glucose-induced hypomethylation promotes binding of Sp-1 to myo-inositol oxygenase: implication in the pathobiology of diabetic tubulopathy [J]. Am J Pathol, 2017, 187(4): 724-739.
[13]
Ko YA, Mohtat D, Suzuki M, et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development [J]. Genome Biol, 2013, 14(10): R108.
[14]
Gautier JF, Porcher R, Abi Khalil C, et al. Kidney dysfunction in adult offspring exposed in utero to type 1 diabetes is associated with alterations in genome-wide DNA methylation [J]. PLoS One, 2015, 10(8): e0134654.
[15]
Wing MR, Devaney JM, Joffe MM, et al. DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC study [J]. Nephrol Dial Transplant, 2014, 29(4): 864-872.
[16]
Sun G, Reddy MA, Yuan H, et al. Epigenetic histone methylation modulates fibrotic gene expression [J]. J Am Soc Nephrol, 2010, 21(12): 2069-2080.
[17]
Reddy MA, Sumanth P, Lanting L, et al. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice [J]. Kidney Int, 2014, 85(2): 362-373.
[18]
Komers R, Mar D, Denisenko O, et al. Epigenetic changes in renal genes dysregulated in mouse and rat models of type 1 diabetes [J]. Lab Invest, 2013, 93(5): 543-552.
[19]
Majumder S, Thieme K, Batchu SN, et al. Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease [J]. J Clin Invest, 2018, 128(1): 483-499.
[20]
Giacco F, Brownlee M. Oxidative stress and diabetic complications [J]. Circ Res, 2010, 107(9): 1058-1070.
[21]
Miao F, Gonzalo IG, Lanting L, et al. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions [J]. J Biol Chem, 2004, 279(17): 18091-18097.
[22]
Zhdanova O, Srivastava S, Di L, et al. The inducible deletion of Drosha and miRNAs in mature podocytes results in a collapsing glomerulopathy [J]. Kidney Int, 2011, 80(7): 719-730.
[23]
Putta S, Lanting L, Sun G, et al. Inhibiting miRNA-192 ameliorates renal fibrosis in diabetic nephropathy [J]. J Am Soc Nephrol, 2012, 23(3): 458-469.
[24]
Kato M, Natarajan R. MiRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets [J]. Ann N Y Acad Sci, 2015, 1353(1): 72-88.
[25]
Alvarez ML, Khosroheidari M, Eddy E, et al. Role of miRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy [J]. PLoS One, 2013, 8(10): e77468.
[26]
Kato M, Wang M, Chen Z, et al. An endoplasmic reticulum stress-regulated lncRNA hosting a miRNA megacluster induces early features of diabetic nephropathy [J]. Nat Commun, 2016, 7: 12864.
[27]
Long J, Badal SS, Ye Z, et al. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy [J]. J Clin Invest, 2016, 126(11): 4205-4218.
[28]
Li A, Peng R, Sun Y, et al. LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1α signaling [J]. Cell Death Dis, 2018, 9(5): 461.
[29]
Li X, Zeng L, Cao C, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy [J]. Exp Cell Res, 2017, 350(2): 327-335.
[30]
Hu XQ, Su SB. An overview of epigenetics in Chinese medicine researches [J]. Chin J Integr Med, 2017, 23(9): 714-720.
[31]
梁炜. 肾康丸对糖尿病肾病大鼠的肾保护作用及对miR-192信号通路的影响[D]. 广州:南方医科大学,2009.
[32]
陈静,王茜,王凯,等. 姜黄素通过miR-146a抑制NF-κB信号通路保护大鼠糖尿病肾病的机制研究[J]. 河北医科大学学报2021, 42(2): 134-139.
[33]
Wu L, Zhang Y, Ma X, et al. The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats [J]. Mol Biol Rep, 2012, 39(9): 9085-9093.
[34]
Lee WJ, Chen YR, Tseng TH. Quercetin induces FasL-related apoptosis, in part, through promotion of histone H3 acetylation in human leukemia HL-60 cells [J]. Oncol Rep, 2011, 25(2): 583-591.
[35]
朱加进,王保法,洪郁芝,等. 雷公藤甲素对糖尿病大鼠尿白蛋白的影响[J]. 浙江中医药大学学报2013, 37(5): 583-586.
[36]
Zhao F, Chen Y, Li R, et al. Triptolide alters histone H3K9 and H3K27 methylation state and induces G0/G1 arrest and caspase-dependent apoptosis in multiple myeloma in vitro [J]. Toxicology, 2010, 267(1-3): 70-79.
[37]
Liebisch M, Wolf G. AGE-induced suppression of EZH2 mediates injury of podocytes by reducing H3K27me3 [J]. Am J Nephrol, 2020, 51(9): 676-692.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[3] 陈玲, 李楠, 杨建乐. 微小RNA-377-3p调控自噬改善脂多糖/D-半乳糖胺诱导的急性肝衰竭的机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 89-97.
[4] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[5] 杨薇, 郝霞, 朱冬振, 张劲柏, 田雪飞, 姚斌. 中医药治疗烧烫伤患者临床效果的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 419-426.
[6] 张博, 韩威, 郝少龙, 李泽乾, 纪智礼. 竞争内源性RNA在胰腺癌研究中的进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 213-216.
[7] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[8] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[9] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[10] 张瑞琪, 张丽娟, 孙斌. 甲状腺相关性眼病表观遗传学的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 226-230.
[11] 方蕊, 宋旭东. 非编码核糖核酸与白内障相关的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 94-98.
[12] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[13] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
[14] 周洋, 曹学, 赵飞, 郑波, 查惠娟, 蒋娜, 罗俊, 熊伟. 血清miR-22、HSPB1水平与急性Stanford A型主动脉夹层患者预后的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 243-248.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要