切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (06) : 347 -352. doi: 10.3877/cma.j.issn.2095-3216.2022.06.009

综述

狼疮性肾炎慢性化中肾脏固有细胞的间充质化研究进展
黄嘉明1, 段红霞2, 赖逾鹏1, 王大吉3, 刘兴娇1, 沈鑫4, 王梅英1,()   
  1. 1. 518035 深圳大学第一附属医院、深圳市第二人民医院风湿免疫科
    2. 100101 北京,中国科学院生物物理研究所、蛋白质与多肽药物重点实验室
    3. 518055 深圳,中国科学院深圳先进技术研究院、深圳合成生物学创新研究院
    4. 518035 深圳大学第一附属医院、深圳市第二人民医院风湿免疫科;515041 汕头大学临床医学院
  • 收稿日期:2022-03-04 出版日期:2022-12-28
  • 通信作者: 王梅英
  • 基金资助:
    深圳市科技创新委员会基金(JCYJ20200109140412476,JCYJ20190809095811254); 院内临床研究项目(20213357002,20213357028)

Progress of research on mesenchymal transformation of renal resident cells in the chronicity of lupus nephritis

Jiaming Huang1, Hongxia Duan2, Yupeng Lai1, Daji Wang3, Xingjiao Liu1, Xin Shen4, Meiying Wang1,()   

  1. 1. Department of Rheumatology and Immunology, Shenzhen Second People′s Hospital, Shenzhen 518035, Guangdong Province
    2. Key Laboratory of Protein and Peptide Drug, Institute of Biophysics of Chinese Academy of Sciences, Beijing 100101
    3. Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province
    4. Department of Rheumatology and Immunology, Shenzhen Second People′s Hospital, Shenzhen 518035, Guangdong Province; Shantou University Clinical Medical School, Shantou 515041, Guangdong Province; China
  • Received:2022-03-04 Published:2022-12-28
  • Corresponding author: Meiying Wang
引用本文:

黄嘉明, 段红霞, 赖逾鹏, 王大吉, 刘兴娇, 沈鑫, 王梅英. 狼疮性肾炎慢性化中肾脏固有细胞的间充质化研究进展[J/OL]. 中华肾病研究电子杂志, 2022, 11(06): 347-352.

Jiaming Huang, Hongxia Duan, Yupeng Lai, Daji Wang, Xingjiao Liu, Xin Shen, Meiying Wang. Progress of research on mesenchymal transformation of renal resident cells in the chronicity of lupus nephritis[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(06): 347-352.

狼疮性肾炎(LN)的肾脏纤维化严重影响系统性红斑狼疮(SLE)患者的预后。肾脏固有细胞间充质化在LN纤维化进展中起关键作用。肾脏固有细胞间充质化早期可促进组织损伤的修复,但也是后期导致病变肾脏进入纤维化的一个关键途径。由于肾脏固有细胞间充质化是一个可逆的过程,所以这为早期抗纤维化治疗提供一个宝贵的时间窗。本文对LN中肾脏固有细胞间充质化的最新研究进展予以综述。

Renal fibrosis in lupus nephritis (LN) seriously affects the prognosis of patients with systemic lupus erythematosus (SLE). Mesenchymal transition of renal intrinsic cells plays a key role in the development of LN fibrosis. Mesenchymal transition of renal intrinsic cells can promote the repair of tissue damage in the early stage, but it is also a key way to lead the diseased kidney into fibrosis in the late stage. As the mesenchymal transition of renal intrinsic cells is a reversible process, it provides a valuable time window for early anti-fibrosis treatment. This article reviewed the latest research on mesenchymal transition of renal intrinsic cells in LN.

图1 肾脏固有细胞间充质化的信号调节通路注:EMT:上皮-间充质转化;Endo-MT:内皮-间充质转化;MET:间充质-上皮转化;BMP:bone morphogenetic protein,骨成形蛋白;HGF:hepatocyte growth factor,肝细胞生长因子;肾脏固有细胞间充质化(EMT/Endo-MT)依赖的信号通路包括TGF-β/Smad、Wnt/β-连环蛋白(β-连环蛋白)、Notch RTK和Hedgehog,TGF-β可以激活上述信号通路,从而诱发肾脏细胞EMT/Endo-MT,促进肾脏纤维化;linaglinpin和metformin、fractalkine、quercetin分别通过抑制上述信号通路,抑制肾脏细胞EMT/Endo-MT,同时诱发肾脏间充质细胞转化为上皮细胞,逆转肾脏纤维化
表1 不同研究阶段的肾纤维化治疗药物总结[46]
[1]
Yen EY, Shaheen M, Woo JMP, et al. 46-Year Trends in systemic lupus erythematosus mortality in the United States, 1968 to 2013: a nationwide population-based study [J]. Ann Intern Med, 2017, 167(11): 777-785.
[2]
Zucchi D, Elefante E, Schiliro D, et al. One year in review 2022: systemic lupus erythematosus [J]. Clin Exp Rheumatol, 2022, 40(1): 4-14.
[3]
Ovadya Y, Krizhanovsky V. A new twist in kidney fibrosis [J]. Nat Med, 2015, 21(9): 975-977.
[4]
LeBleu VS, Taduri G, O'Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis [J]. Nat Med, 2013, 19(8): 1047-1053.
[5]
Yuan Q, Tan RJ, Liu Y. Myofibroblast in kidney fibrosis: origin, activation, and regulation [J]. Adv Exp Med Biol, 2019, 1165: 253-283.
[6]
Li L, Fu H, Liu Y. The fibrogenic niche in kidney fibrosis: components and mechanisms [J]. Nat Rev Nephrol, 2022, 18(9): 545-557.
[7]
Sheng L, Zhuang S. New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis [J]. Front Physiol, 2020, 11: 569322.
[8]
Fu D, Senouthai S, Wang J, et al. FKN facilitates HK-2 cell EMT and tubulointerstitial lesions via the Wnt/β-catenin pathway in a murine model of lupus nephritis [J]. Front Immunol, 2019, 10: 784.
[9]
Liu Q, Du Y, Li K, et al. Anti-OSM antibody inhibits tubulointerstitial lesion in a murine model of lupus nephritis [J]. Mediators Inflamm, 2017, 2017: 3038514.
[10]
Markwald RR, Fitzharris TP, Smith WN. Sturctural analysis of endocardial cytodifferentiation [J]. Dev Biol, 1975, 42(1): 160-180.
[11]
Zeisberg EM, Potenta SE, Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition [J]. J Am Soc Nephrol, 2008, 19(12): 2282-2287.
[12]
Li J, Qu X, Bertram JF. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice [J]. Am J Pathol, 2009, 175(4): 1380-1388.
[13]
周颖,陈樱花,张明超,等. 系统性红斑狼疮相关血栓性微血管病血管内皮-间充质细胞转分化的研究[J]. 肾脏病与透析肾移植杂志2017, 26(1): 20-25.
[14]
Loeffler I, Wolf G. Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? [J]. Cells, 2015, 4(4): 631-652.
[15]
Sam R, Wanna L, Gudehithlu KP, et al. Glomerular epithelial cells transform to myofibroblasts: early but not late removal of TGF-beta(1) reverses transformation [J]. Transl Res, 2006, 148(3): 142-148.
[16]
Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition [J]. Sci Signal, 2014, 7(344): re8.
[17]
Cruz-Solbes AS, Youker K. Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): role and implications in kidney fibrosis [J]. Results Probl Cell Differ, 2017, 60: 345-372.
[18]
Meng XM, Tang PM, Li J, et al. TGF-beta/Smad signaling in renal fibrosis [J]. Front Physiol, 2015, 6: 82.
[19]
Zhang YE. Non-Smad signaling pathways of the TGF-beta family [J]. Cold Spring Harb Perspect Biol, 2017; 9(2): a022129.
[20]
Patel S, Takagi KI, Suzuki J, et al. RhoGTPase activation is a key step in renal epithelial mesenchymal transdifferentiation [J]. J Am Soc Nephrol, 2005, 16(7): 1977-1984.
[21]
Das S, Becker BN, Hoffmann FM, et al. Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the Rho pathway [J]. BMC Cell Biol, 2009, 10: 94.
[22]
Zavadil J, Cermak L, Soto-Nieves N, et al. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition [J]. EMBO J, 2004, 23(5): 1155-1165.
[23]
Tan RJ, Zhou D, Zhou L, et al. Wnt/beta-catenin signaling and kidney fibrosis [J]. Kidney Int Suppl (2011), 2014, 4(1): 84-90.
[24]
Wong DWL, Yiu WH, Chan KW, et al. Activated renal tubular Wnt/β-catenin signaling triggers renal inflammation during overload proteinuria [J]. Kidney Int, 2018, 93(6): 1367-1383.
[25]
Singh SP, Tao S, Fields TA, et al. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice [J]. Dis Model Mech, 2015, 8(8): 931-940.
[26]
Nyhan KC, Faherty N, Murray G, et al. Jagged/Notch signalling is required for a subset of TGF β1 responses in human kidney epithelial cells [J]. Biochim Biophys Acta, 2010, 1803(12): 1386-1395.
[27]
Burns WC, Kantharidis P, Thomas MC. The role of tubular epithelial-mesenchymal transition in progressive kidney disease [J]. Cells Tissues Organs, 2007, 185(1-3): 222-231.
[28]
Lovisa S, LeBleu VS, Tampe B, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis [J]. Nat Med, 2015, 21(9): 998-1009.
[29]
Grande MT, Sanchez-Laorden B, Lopez-Blau C, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease [J]. Nat Med, 2015, 21(9): 989-997.
[30]
Platel V, Faure S, Corre I, et al. Endothelial-to-mesenchymal transition (EndoMT): roles in tumorigenesis, metastatic extravasation and therapy resistance [J]. J Oncol, 2019, 2019: 8361945.
[31]
Rieder F, Kessler SP, West GA, et al. Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis [J]. Am J Pathol, 2011, 179(5): 2660-2673.
[32]
Zhou J, Li R, Liu Q, et al. Blocking 5-LO pathway alleviates renal fibrosis by inhibiting the epithelial-mesenchymal transition [J]. Biomed Pharmacother, 2021, 138: 111470.
[33]
Yung S, Tsang RC, Sun Y, et al. Effect of human anti-DNA antibodies on proximal renal tubular epithelial cell cytokine expression: implications on tubulointerstitial inflammation in lupus nephritis [J]. J Am Soc Nephrol, 2005, 16(11): 3281-3294.
[34]
Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis [J]. Am J Pathol, 2001, 159(4): 1465-1475.
[35]
Smeets B, Kuppe C, Sicking EM, et al. Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis [J]. J Am Soc Nephrol, 2011, 22(7): 1262-1274.
[36]
Kinloch AJ, Chang A, Ko K, et al. Vimentin is a dominant target of in situ humoral immunity in human lupus tubulointerstitial nephritis [J]. Arthritis Rheumatol, 2014, 66(12): 3359-3370.
[37]
Pieterse E, Rother N, Garsen M, et al. Neutrophil extracellular traps drive endothelial-to-mesenchymal transition [J]. Arterioscler Thromb Vasc Biol, 2017, 37(7): 1371-1379.
[38]
Zhang L, Liu L, Bai M, et al. Hypoxia-induced HE4 in tubular epithelial cells promotes extracellular matrix accumulation and renal fibrosis via NF-κB [J]. FASEB J, 2020, 34(2): 2554-2567.
[39]
Fairhurst AM, Xie C, Fu Y, et al. Type I interferons produced by resident renal cells may promote end-organ disease in autoantibody-mediated glomerulonephritis [J]. J Immunol, 2009, 183(10): 6831-6838.
[40]
Ding X, Ren Y, He X. IFN-I mediates lupus nephritis from the beginning to renal fibrosis [J]. Front Immunol, 2021, 12: 676082.
[41]
Shi S, Srivastava SP, Kanasaki M, et al. Interactions of DPP-4 and integrin β1 influences endothelial-to-mesenchymal transition [J]. Kidney Int, 2015, 88(3): 479-489.
[42]
Chen Y, Zou H, Lu H, et al. Research progress of endothelial-mesenchymal transition in diabetic kidney disease [J]. J Cell Mol Med, 2022, 26(12): 3313-3322.
[43]
Liang D, Liu S, Song Z, et al. Metformin ameliorates renal fibrosis in mice with unilateral ureteral obstruction and inhibits TGF-β1-induced upregulation of cadherin-6 in renal proximal tubule epithelial cells [J]. Diabetes, 2018, 67(Suppl 1): 2199-PUB.
[44]
Liu X, Sun N, Mo N, et al. Quercetin inhibits kidney fibrosis and the epithelial to mesenchymal transition of the renal tubular system involving suppression of the Sonic Hedgehog signaling pathway [J]. Food Funct, 2019, 10(6): 3782-3797.
[45]
Grande MT, Sánchez-Laorden B, López-Blau C, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease [J]. Nat Med, 2015, 21(9): 989-997.
[46]
Ruiz-Ortega M, Lamas S, Ortiz A. Antifibrotic agents for the management of CKD: a review [J]. Am J Kidney Dis, 2022, 80(2): 251-263.
[1] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[2] 王亚岚, 倪婧, 余世庆, 陶银花, 张荣. 尼达尼布抗纤维化治疗特发性肺纤维化的耐受性和疗效预测因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 750-755.
[3] 梅杰, 徐瑞, 蔡芸, 朱一超. 纤维化对肿瘤浸润免疫细胞的影响——“硬冷肿瘤”的形成[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 257-263.
[4] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[5] 翟航, 张广权, 吴芳芳, 史宪杰. 非编码RNA调控胰腺纤维化研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 583-587.
[6] 陈意志. 核磁共振钆造影剂导致的肾源性系统性纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 358-358.
[7] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[8] 赵静, 张嘉欣, 高言, 谢席胜. 微小病变肾病的发病机制及治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 207-212.
[9] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[10] 周慧杰, 张云龙. 基于数据挖掘技术分析肾纤维化的中医病机与治法[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 152-160.
[11] 王静, 丁红. 益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1、α-平滑肌肌动蛋白表达的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 161-165.
[12] 谭欣, 王鹏源, 胡良皞. 慢性胰腺炎抗炎和抗纤维化治疗的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 289-296.
[13] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[14] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[15] 王可涵, 许涛, 周全红. 围术期谵妄与应激的研究进展[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 45-49.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?