[1] |
Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease [J]. Nat Rev Mol Cell Biol, 2018, 19(3): 175-191.
|
[2] |
Maceyka M, Harikumar KB, Milstien S, et al. Sphingosine-1-phosphate signaling and its role in disease [J]. Trends Cell Biol, 2011, 22(1): 50-60.
|
[3] |
Ueda N. A rheostat of ceramide and sphingosine-1-phosphate as a determinant of oxidative stress-mediated kidney injury [J]. Int J Mol Sci, 2022, 23(7): 4010.
|
[4] |
Drexler Y, Molina J, Mitrofanova A, et al. Sphingosine-1-phosphate metabolism and signaling in kidney diseases [J]. J Am Soc Nephrol, 2021, 32(1): 9-31.
|
[5] |
Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease [J]. Nature, 2014, 510(7503): 58-67.
|
[6] |
Yaghobian D, Don AS, Yaghobian S, et al. Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy [J]. Clin Exp Pharmacol Physiol, 2016, 43(1): 56-66.
|
[7] |
Mallela SK, Merscher S, Fornoni A. Implications of sphingolipid metabolites in kidney diseases [J]. Int J Mol Sci, 2022, 23(8): 4244.
|
[8] |
Hait NC, Allegood J, Maceyka M, et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate [J]. Science, 2009, 325(5945): 1254-1257.
|
[9] |
Alvarez SE, Harikumar KB, Hait NC, et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2 [J]. Nature, 2010, 465(7301): 1084-1088.
|
[10] |
Hengst JA, Guilford JM, Fox TE, et al. Sphingosine kinase 1 localized to the plasma membrane lipid raft microdomain overcomes serum deprivation induced growth inhibition [J]. Arch Biochem Biophys, 2009, 492(1-2): 62-73.
|
[11] |
Igarashi N, Okada T, Hayashi S, et al. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis [J]. J Biol Chem, 2003, 278(47): 46832-46839.
|
[12] |
Reiss U, Oskouian B, Zhou J, et al. Sphingosine-phosphate lyase enhances stress-induced ceramide generation and apoptosis [J]. J Biol Chem, 2004, 279(2): 1281-1290.
|
[13] |
Prasad R, Hadjidemetriou I, Maharaj A, et al. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome [J]. J Clin Invest, 2017, 127(3): 942-953.
|
[14] |
Mitra P, Oskeritzian CA, Payne SG, et al. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells [J]. Proc Natl Acad Sci USA, 2006, 103(44): 16394-1639.
|
[15] |
Tanfin Z, Serrano-Sanchez M, Leiber D. ATP-binding cassette ABCC1 is involved in the release of sphingosine 1-phosphate from rat uterine leiomyoma ELT3 cells and late pregnant rat myometriun [J]. Cell Signal, 2011, 23(12): 1997-2004.
|
[16] |
Hisano Y, Kobayashi N, Yamaguchi A, et al. Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells [J]. PLoS One, 2012, 7(6): e38941.
|
[17] |
Nijnik A, Clare S, Hale C, et al. The role of sphingosine-1-phosphate transporter Spns2 in immune system function [J]. J Immunol, 2012, 189(1): 102-111.
|
[18] |
Vu TM, Ishizu AN, Foo JC, et al. Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets [J]. Nature, 2017, 550(7677): 524-528.
|
[19] |
Bisgaard LS, Christoffersen C. The ApoM/S1P complex-A mediator in kidney biology and disease? [J]. Front Med (Lausanne), 2021, 8: 754490.
|
[20] |
Obinata H, Kuo A, Wada Y, et al. Identification of ApoA4 as a sphingosine-1-phosphate chaperone in ApoM- and albumin-deficient mice [J]. J Lipid Res, 2019, 60(11): 1912-1921.
|
[21] |
Sun XJ, Wang C, Zhang LX, et al. Sphingosine-1-phosphate and its receptors in anti-neutrophil cytoplasmic antibody-associated vasculitis [J]. Nephrol Dial Transplant, 2017, 32(8): 1313-1322.
|
[22] |
Awad AS, Rouse MD, Khutsishvili K, et al. Chronic sphingosine 1-phosphate 1 receptor activation attenuates early-stage diabetic nephropathy independent of lymphocytes [J]. Kidney Int, 2011, 79(10): 1090-1098.
|
[23] |
Ham A, Kim M, Kim JY, et al. Selective deletion of the endothelial sphingosine-1-phosphate 1 receptor exacerbates kidney ischemia-reperfusion injury [J]. Kidney Int, 2014, 85(4): 807-823.
|
[24] |
Park SW, Kim M, Brown KM, et al. Inhibition of sphingosine-1-phosphate receptor 2 protects against renal ischemia-reperfusion injury [J]. J Am Soc Nephrol, 2012, 23(2): 266-280.
|
[25] |
Asao R, Asanuma K, Kodama F, et al. Relationships between levels of urinary podocalyxin, number of urinary podocytes, and histologic injury in adult patients with IgA nephropathy [J]. Clin J Am Soc Nephrol, 2012, 7(9): 1385-1393.
|
[26] |
Yoo TH, Pedigo CE, Guzman J, et al. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease [J]. J Am Soc Nephrol, 2015, 26(1): 133-147.
|
[27] |
Ren S, Babelova A, Moreth K, et al. Transforming growth factor-beta2 upregulates sphingosine kinase-1 activity, which in turn attenuates the fibrotic response to TGF-beta2 by impeding CTGF expression [J]. Kidney Int, 2009, 76(8): 857-867.
|
[28] |
Lan T, Liu W, Xie X, et al. Sphingosine kinase-1 pathway mediates high glucose-induced fibronectin expression in glomerular mesangial cells [J]. Mol Endocrinol, 2011, 25(12): 2094-2105.
|
[29] |
Yaghobian D, Don AS, Yaghobian S, et al. Increased sphingosine-1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy [J]. Clin Exp Pharmacol Physiol, 2016, 43(1): 56-66.
|
[30] |
Lan T, Shen X, Liu P, et al. Berberine ameliorates renal injury in diabetic C57BL/6 mice: involvement of suppression of SphK-S1P signaling pathway [J]. Arch Biochem Biophys, 2010, 502(2): 112-120.
|
[31] |
Ahmad A, Mitrofanova A, Bielawski J, et al. Sphingomyelinase-like phosphodiesterase 3b mediates radiation-induced damage of renal podocytes [J]. FASEB J, 2017, 31(2): 771-780.
|
[32] |
Azzam P, Francis M, Youssef T, et al. Crosstalk between SMPDL3b and NADPH oxidases mediates radiation-induced damage of renal podocytes [J]. Front Med (Lausanne), 2021, 8: 732528.
|
[33] |
Rizk DV, Saha MK, Hall S, et al. Glomerular immunodeposits of patients with IgA nephropathy are enriched for IgG autoantibodies specific for galactose-deficient IgA1 [J]. J Am Soc Nephrol, 2019, 30(10): 2017-2026.
|
[34] |
Kurano M, Tsuneyama K, Morimoto Y, et al. Apolipoprotein M suppresses the phenotypes of IgA nephropathy in hyper-IgA mice [J]. FASEB J, 2019, 33(4): 5181-5195.
|
[35] |
Rin A, Katsuhiko A, Fumiko K, et al. Relationships between levels of urinary podocalyxin, number of urinary podocytes, and histologic injury in adult patients with IgA nephropathy [J]. Clin J Am Soc Nephrol, 2012, 7(9): 1385-1393.
|
[36] |
Bensimhon AR, Williams AE, Gbadegesin RA. Treatment of steroid-resistant nephrotic syndrome in the genomic era [J]. Pediatr Nephrol, 2019, 34(11): 2279-2293.
|
[37] |
Kemper MJ, Lemke A. Treatment of genetic forms of nephrotic syndrome [J]. Front Pediatr, 2018, 6: 72.
|
[38] |
Lovric S, Goncalves S, Gee HY, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency [J]. J Clin Invest, 2017, 127(3): 912-928.
|
[39] |
Patyna S, Büttner S, Eckes T, et al. Blood ceramides as novel markers for renal impairment in systemic lupus erythematosus [J]. Prostaglandins Other Lipid Mediat, 2019, 144: 106348.
|
[40] |
Mohammed S, Vineetha NS, James S, et al. Examination of the role of sphingosine kinase 2 in a murine model of systemic lupus erythematosus [J]. FASEB J, 2019, 33(6): 7061-7071.
|
[41] |
Okazaki H, Hirata D, Kamimura T, et al. Effects of FTY720 in MRL-lpr/lpr mice: therapeutic potential in systemic lupus erythematosus [J]. J Rheumatol, 2002, 29(4): 707-716.
|
[42] |
Alperovich G, Rama I, Lloberas N, et al. New immunosuppresor strategies in the treatment of murine lupus nephritis [J]. Lupus, 2007, 16(1): 18-24.
|
[43] |
Taylor Meadows KR, Steinberg MW, Clemons B, et al. Ozanimod (RPC1063), a selective S1PR1 and S1PR5 modulator, reduces chronic inflammation and alleviates kidney pathology in murine systemic lupus erythematosus [J]. PLoS One, 2018, 13(4): e0193236.
|
[44] |
Sun XJ, Wang C, Zhang LX, et al. Sphingosine-1-phosphate and its receptors in anti-neutrophil cytoplasmic antibody-associated vasculitis [J]. Nephrol Dial Transplant, 2017, 32(8): 1313-1322.
|
[45] |
Hao J, Huang YM, Zhao MH, et al. The interaction between C5a and sphingosine-1-phosphate in neutrophils for antineutrophil cytoplasmic antibody mediated activation [J]. Arthritis Res Ther, 2014, 16(4): R142.
|
[46] |
Fornoni A, Sageshima J, Wei C, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis [J]. Sci Transl Med, 2011, 3(85): 85ra46.
|
[47] |
di Meo NA, Lasorsa F, Rutigliano M, et al. Renal cell carcinoma as a metabolic disease: an update on main pathways, potential biomarkers, and therapeutic targets [J]. Int J Mol Sci, 2022, 23(22): 14360.
|
[48] |
Stepanovska Tanturovska B, Manaila R, Fabbro D, et al. Lipids as targets for renal cell carcinoma therapy [J]. Int J Mol Sci, 2023, 24(4): 3272.
|
[49] |
Suzuki S, Kakefuda T, Amemiya H, et al. An immunosuppressive regimen using FTY720 combined with cyclosporin in canine kidney transplantation [J]. Transpl Int, 1998, 11(2): 95-101.
|
[50] |
Ueda H, Takahara S, Azuma H, et al. Effect of a novel immunosuppressant, FTY720, on allograft survival after renal transplant in rats [J]. Eur Surg Res, 2000, 32(5): 279-283.
|
[51] |
Wang P, Yuan Y, Lin W, et al. Roles of sphingosine-1-phosphate signaling in cancer [J]. Cancer Cell Int, 2019, 19: 295.
|