切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2023, Vol. 12 ›› Issue (06) : 344 -348. doi: 10.3877/cma.j.issn.2095-3216.2023.06.008

综述

1-磷酸鞘氨醇在肾脏疾病中的作用研究进展
任夏雨, 侯延娟, 王利华()   
  1. 030001 太原,山西医科大学第二医院肾内科、山西省肾脏病研究所
  • 收稿日期:2023-02-16 出版日期:2023-12-28
  • 通信作者: 王利华

Research progress on the role of sphingosine-1-phosphate in kidney diseases

Xiayu Ren, Yanjuan Hou, Lihua Wang()   

  1. Department of Nephrology, Second Hospital Affiliated to Shanxi Medical University, Shanxi Provincial Institute of Nephrology, Taiyuan 030001, Shanxi Province, China
  • Received:2023-02-16 Published:2023-12-28
  • Corresponding author: Lihua Wang
引用本文:

任夏雨, 侯延娟, 王利华. 1-磷酸鞘氨醇在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(06): 344-348.

Xiayu Ren, Yanjuan Hou, Lihua Wang. Research progress on the role of sphingosine-1-phosphate in kidney diseases[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(06): 344-348.

鞘脂及鞘脂代谢产物是一类重要的生物活性脂质,参与细胞生长、凋亡等多种生理病理过程的信号转导。鞘脂及鞘脂代谢产物在多种肾脏疾病中的表达变化,提示其可能参与了肾脏疾病的发生与发展。1-磷酸鞘氨醇是一种重要的生物活性鞘脂类代谢物,可参与急性肾损伤、糖尿病肾病、狼疮肾炎等的病理生理过程。探讨1-磷酸鞘氨醇代谢及其信号通路的调控,有可能为肾脏疾病治疗提供新思路。

Sphingolipids and sphingolipid metabolites are an important class of bioactive lipids, which are involved in signal transduction of various physiological and pathological processes such as cell growth and apoptosis. The expression changes of sphingolipids and sphingolipid metabolites in a variety of kidney diseases suggested that they may be involved in the development and progression of kidney diseases. Sphingosine-1-phosphate is an important bioactive sphingolipid metabolite, and can participate in the pathophysiological processes of acute kidney injury, diabetic kidney disease, and lupus nephritis, etc. Exploration of the regulation of sphingosine-1-phosphate metabolism and its signaling pathway may provide new ideas for the treatment of kidney diseases.

图1 磷酸鞘氨醇代谢
[1]
Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease [J]. Nat Rev Mol Cell Biol, 2018, 19(3): 175-191.
[2]
Maceyka M, Harikumar KB, Milstien S, et al. Sphingosine-1-phosphate signaling and its role in disease [J]. Trends Cell Biol, 2011, 22(1): 50-60.
[3]
Ueda N. A rheostat of ceramide and sphingosine-1-phosphate as a determinant of oxidative stress-mediated kidney injury [J]. Int J Mol Sci, 2022, 23(7): 4010.
[4]
Drexler Y, Molina J, Mitrofanova A, et al. Sphingosine-1-phosphate metabolism and signaling in kidney diseases [J]. J Am Soc Nephrol, 2021, 32(1): 9-31.
[5]
Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease [J]. Nature, 2014, 510(7503): 58-67.
[6]
Yaghobian D, Don AS, Yaghobian S, et al. Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy [J]. Clin Exp Pharmacol Physiol, 2016, 43(1): 56-66.
[7]
Mallela SK, Merscher S, Fornoni A. Implications of sphingolipid metabolites in kidney diseases [J]. Int J Mol Sci, 2022, 23(8): 4244.
[8]
Hait NC, Allegood J, Maceyka M, et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate [J]. Science, 2009, 325(5945): 1254-1257.
[9]
Alvarez SE, Harikumar KB, Hait NC, et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2 [J]. Nature, 2010, 465(7301): 1084-1088.
[10]
Hengst JA, Guilford JM, Fox TE, et al. Sphingosine kinase 1 localized to the plasma membrane lipid raft microdomain overcomes serum deprivation induced growth inhibition [J]. Arch Biochem Biophys, 2009, 492(1-2): 62-73.
[11]
Igarashi N, Okada T, Hayashi S, et al. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis [J]. J Biol Chem, 2003, 278(47): 46832-46839.
[12]
Reiss U, Oskouian B, Zhou J, et al. Sphingosine-phosphate lyase enhances stress-induced ceramide generation and apoptosis [J]. J Biol Chem, 2004, 279(2): 1281-1290.
[13]
Prasad R, Hadjidemetriou I, Maharaj A, et al. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome [J]. J Clin Invest, 2017, 127(3): 942-953.
[14]
Mitra P, Oskeritzian CA, Payne SG, et al. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells [J]. Proc Natl Acad Sci USA, 2006, 103(44): 16394-1639.
[15]
Tanfin Z, Serrano-Sanchez M, Leiber D. ATP-binding cassette ABCC1 is involved in the release of sphingosine 1-phosphate from rat uterine leiomyoma ELT3 cells and late pregnant rat myometriun [J]. Cell Signal, 2011, 23(12): 1997-2004.
[16]
Hisano Y, Kobayashi N, Yamaguchi A, et al. Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells [J]. PLoS One, 2012, 7(6): e38941.
[17]
Nijnik A, Clare S, Hale C, et al. The role of sphingosine-1-phosphate transporter Spns2 in immune system function [J]. J Immunol, 2012, 189(1): 102-111.
[18]
Vu TM, Ishizu AN, Foo JC, et al. Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets [J]. Nature, 2017, 550(7677): 524-528.
[19]
Bisgaard LS, Christoffersen C. The ApoM/S1P complex-A mediator in kidney biology and disease? [J]. Front Med (Lausanne), 2021, 8: 754490.
[20]
Obinata H, Kuo A, Wada Y, et al. Identification of ApoA4 as a sphingosine-1-phosphate chaperone in ApoM- and albumin-deficient mice [J]. J Lipid Res, 2019, 60(11): 1912-1921.
[21]
Sun XJ, Wang C, Zhang LX, et al. Sphingosine-1-phosphate and its receptors in anti-neutrophil cytoplasmic antibody-associated vasculitis [J]. Nephrol Dial Transplant, 2017, 32(8): 1313-1322.
[22]
Awad AS, Rouse MD, Khutsishvili K, et al. Chronic sphingosine 1-phosphate 1 receptor activation attenuates early-stage diabetic nephropathy independent of lymphocytes [J]. Kidney Int, 2011, 79(10): 1090-1098.
[23]
Ham A, Kim M, Kim JY, et al. Selective deletion of the endothelial sphingosine-1-phosphate 1 receptor exacerbates kidney ischemia-reperfusion injury [J]. Kidney Int, 2014, 85(4): 807-823.
[24]
Park SW, Kim M, Brown KM, et al. Inhibition of sphingosine-1-phosphate receptor 2 protects against renal ischemia-reperfusion injury [J]. J Am Soc Nephrol, 2012, 23(2): 266-280.
[25]
Asao R, Asanuma K, Kodama F, et al. Relationships between levels of urinary podocalyxin, number of urinary podocytes, and histologic injury in adult patients with IgA nephropathy [J]. Clin J Am Soc Nephrol, 2012, 7(9): 1385-1393.
[26]
Yoo TH, Pedigo CE, Guzman J, et al. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease [J]. J Am Soc Nephrol, 2015, 26(1): 133-147.
[27]
Ren S, Babelova A, Moreth K, et al. Transforming growth factor-beta2 upregulates sphingosine kinase-1 activity, which in turn attenuates the fibrotic response to TGF-beta2 by impeding CTGF expression [J]. Kidney Int, 2009, 76(8): 857-867.
[28]
Lan T, Liu W, Xie X, et al. Sphingosine kinase-1 pathway mediates high glucose-induced fibronectin expression in glomerular mesangial cells [J]. Mol Endocrinol, 2011, 25(12): 2094-2105.
[29]
Yaghobian D, Don AS, Yaghobian S, et al. Increased sphingosine-1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy [J]. Clin Exp Pharmacol Physiol, 2016, 43(1): 56-66.
[30]
Lan T, Shen X, Liu P, et al. Berberine ameliorates renal injury in diabetic C57BL/6 mice: involvement of suppression of SphK-S1P signaling pathway [J]. Arch Biochem Biophys, 2010, 502(2): 112-120.
[31]
Ahmad A, Mitrofanova A, Bielawski J, et al. Sphingomyelinase-like phosphodiesterase 3b mediates radiation-induced damage of renal podocytes [J]. FASEB J, 2017, 31(2): 771-780.
[32]
Azzam P, Francis M, Youssef T, et al. Crosstalk between SMPDL3b and NADPH oxidases mediates radiation-induced damage of renal podocytes [J]. Front Med (Lausanne), 2021, 8: 732528.
[33]
Rizk DV, Saha MK, Hall S, et al. Glomerular immunodeposits of patients with IgA nephropathy are enriched for IgG autoantibodies specific for galactose-deficient IgA1 [J]. J Am Soc Nephrol, 2019, 30(10): 2017-2026.
[34]
Kurano M, Tsuneyama K, Morimoto Y, et al. Apolipoprotein M suppresses the phenotypes of IgA nephropathy in hyper-IgA mice [J]. FASEB J, 2019, 33(4): 5181-5195.
[35]
Rin A, Katsuhiko A, Fumiko K, et al. Relationships between levels of urinary podocalyxin, number of urinary podocytes, and histologic injury in adult patients with IgA nephropathy [J]. Clin J Am Soc Nephrol, 2012, 7(9): 1385-1393.
[36]
Bensimhon AR, Williams AE, Gbadegesin RA. Treatment of steroid-resistant nephrotic syndrome in the genomic era [J]. Pediatr Nephrol, 2019, 34(11): 2279-2293.
[37]
Kemper MJ, Lemke A. Treatment of genetic forms of nephrotic syndrome [J]. Front Pediatr, 2018, 6: 72.
[38]
Lovric S, Goncalves S, Gee HY, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency [J]. J Clin Invest, 2017, 127(3): 912-928.
[39]
Patyna S, Büttner S, Eckes T, et al. Blood ceramides as novel markers for renal impairment in systemic lupus erythematosus [J]. Prostaglandins Other Lipid Mediat, 2019, 144: 106348.
[40]
Mohammed S, Vineetha NS, James S, et al. Examination of the role of sphingosine kinase 2 in a murine model of systemic lupus erythematosus [J]. FASEB J, 2019, 33(6): 7061-7071.
[41]
Okazaki H, Hirata D, Kamimura T, et al. Effects of FTY720 in MRL-lpr/lpr mice: therapeutic potential in systemic lupus erythematosus [J]. J Rheumatol, 2002, 29(4): 707-716.
[42]
Alperovich G, Rama I, Lloberas N, et al. New immunosuppresor strategies in the treatment of murine lupus nephritis [J]. Lupus, 2007, 16(1): 18-24.
[43]
Taylor Meadows KR, Steinberg MW, Clemons B, et al. Ozanimod (RPC1063), a selective S1PR1 and S1PR5 modulator, reduces chronic inflammation and alleviates kidney pathology in murine systemic lupus erythematosus [J]. PLoS One, 2018, 13(4): e0193236.
[44]
Sun XJ, Wang C, Zhang LX, et al. Sphingosine-1-phosphate and its receptors in anti-neutrophil cytoplasmic antibody-associated vasculitis [J]. Nephrol Dial Transplant, 2017, 32(8): 1313-1322.
[45]
Hao J, Huang YM, Zhao MH, et al. The interaction between C5a and sphingosine-1-phosphate in neutrophils for antineutrophil cytoplasmic antibody mediated activation [J]. Arthritis Res Ther, 2014, 16(4): R142.
[46]
Fornoni A, Sageshima J, Wei C, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis [J]. Sci Transl Med, 2011, 3(85): 85ra46.
[47]
di Meo NA, Lasorsa F, Rutigliano M, et al. Renal cell carcinoma as a metabolic disease: an update on main pathways, potential biomarkers, and therapeutic targets [J]. Int J Mol Sci, 2022, 23(22): 14360.
[48]
Stepanovska Tanturovska B, Manaila R, Fabbro D, et al. Lipids as targets for renal cell carcinoma therapy [J]. Int J Mol Sci, 2023, 24(4): 3272.
[49]
Suzuki S, Kakefuda T, Amemiya H, et al. An immunosuppressive regimen using FTY720 combined with cyclosporin in canine kidney transplantation [J]. Transpl Int, 1998, 11(2): 95-101.
[50]
Ueda H, Takahara S, Azuma H, et al. Effect of a novel immunosuppressant, FTY720, on allograft survival after renal transplant in rats [J]. Eur Surg Res, 2000, 32(5): 279-283.
[51]
Wang P, Yuan Y, Lin W, et al. Roles of sphingosine-1-phosphate signaling in cancer [J]. Cancer Cell Int, 2019, 19: 295.
[1] 张艳如, 苏晓乐, 王利华. 丝氨酸蛋白酶Corin与肾脏疾病的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 220-223.
[2] 李德伦, 袁思宇, 刘安琪. 微小RNA-155在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(01): 39-43.
[3] 沈婉君, 王田田, 尹智炜, 谢院生. 免疫电镜技术在肾脏疾病诊断和研究中的应用[J]. 中华肾病研究电子杂志, 2022, 11(04): 219-223.
[4] 张爽, 刘书馨, 牟向伟, 姜博文, 董毳, 由莲莲. 人工智能技术在肾脏病中的应用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(06): 342-346.
[5] 张亚伟, 王兴智. 可溶性ST2蛋白在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 292-295.
[6] 张楷齐, 吴晶魁, 倪兆慧. 铁死亡在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 268-273.
[7] 季红娟, 林娟. 基于分类树方法构建糖尿病肾脏疾病发病风险模型[J]. 中华肾病研究电子杂志, 2021, 10(05): 246-251.
[8] 刘露露, 赖学莉, 谌卫, 郭志勇. 吲哚胺2,3-双加氧酶在肾脏疾病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(04): 224-226.
[9] 杜晓艳, 黄蓉双, 马良, 付平. 脂肪酸结合蛋白4在肾脏疾病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(01): 44-46.
[10] 李琦, 朱晗玉, 徐莉, 韩秋霞, 闫景瑶, 赵焕焕, 丁潇楠, 范秋灵. 足细胞损伤时细胞周期调控及MDM2-p53通路作用的研究进展[J]. 中华肾病研究电子杂志, 2020, 09(04): 176-180.
[11] 王玲, 何娅妮. Parkin的分子结构和生物学功能及其在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2020, 09(02): 74-77.
[12] 田冬琴, 刘开翔, 占志朋, 谢席胜. 糖尿病肾病规范化诊断研究进展[J]. 中华肾病研究电子杂志, 2019, 08(03): 132-137.
[13] 李雨竹, 滕兰波, 刘书馨. 半乳糖凝集素-3与肾脏疾病的关系[J]. 中华肾病研究电子杂志, 2019, 08(02): 91-93.
[14] 刘沫言, 谢院生, 董哲毅, 张雪光, 孙雪峰, 张冬, 周建辉, 朱晗玉, 陈香美. 血红蛋白在鉴别糖尿病肾病与非糖尿病肾脏疾病中的作用[J]. 中华肾病研究电子杂志, 2018, 07(06): 271-276.
[15] 任姜汶, 张小明, 戴欢子, 张建国, 李开龙, 何娅妮, 林利容. 老年肾脏病患者临床及病理特征分析[J]. 中华肾病研究电子杂志, 2018, 07(04): 163-166.
阅读次数
全文


摘要