切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2019, Vol. 08 ›› Issue (02) : 91 -93. doi: 10.3877/cma.j.issn.2095-3216.2019.02.009

所属专题: 文献

综述

半乳糖凝集素-3与肾脏疾病的关系
李雨竹1, 滕兰波2, 刘书馨2,()   
  1. 1. 116033 大连市中心医院;116044 大连医科大学
    2. 116033 大连市中心医院
  • 收稿日期:2018-06-25 出版日期:2019-04-28
  • 通信作者: 刘书馨

Relationship between galectin-3 and kidney disease

Yuzhu Li1, Lanbo Teng2, Shuxin Liu2,()   

  1. 1. Dalian Municipal Central Hospital, Dalian 116033; Dalian Medical University, Dalian 116044; Liaoning Province, China
    2. Dalian Municipal Central Hospital, Dalian 116033
  • Received:2018-06-25 Published:2019-04-28
  • Corresponding author: Shuxin Liu
  • About author:
    Corresponding author: Liu Shuxin, Email:
引用本文:

李雨竹, 滕兰波, 刘书馨. 半乳糖凝集素-3与肾脏疾病的关系[J]. 中华肾病研究电子杂志, 2019, 08(02): 91-93.

Yuzhu Li, Lanbo Teng, Shuxin Liu. Relationship between galectin-3 and kidney disease[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2019, 08(02): 91-93.

目前已有许多研究显示半乳糖凝集素家族中的半乳糖凝集素-3参与多种疾病病理生理过程,其在肾脏病中承担角色的研究已有诸多进展,值得学界关注。本篇将对半乳糖凝集素-3在肾脏表达、慢性肾脏病、急性肾损伤和肾移植中的潜在作用进行综述。

Many studies have shown that galectin-3, a member of the galectins family, was involved in the pathophysiological processes of various diseases. Researches on the role of galectin-3 in kidney diseases have progressed, and are worthy of academic concern. This article reviewed the kidney expression of galectin-3 as well as the potential role of it in chronic kidney disease, acute kidney injury, and kidney transplantation.

[1]
Barondes SH, Cooper DN, Gitt MA, et al. Galectins: structure and function of a large family of animal lectins [J]. J Biol Chem, 1994, 269(33):20807-20810.
[2]
Leffler H, Carlsson S, Hedlund M, et al. Introduction to galectins [J]. Glycoconj J, 2002, 19(7-9):433-440.
[3]
Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential [J]. Expert Rev Mol Med, 2008, 10:e17.
[4]
Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis [J]. Am J Pathol, 2008, 172(2):288-298.
[5]
Feldman C. Clinical relevance of antimicrobial resistance in the management of pneumococcal community-acquired pneumonia [J]. J Lab Clin Med, 2004, 143(5):269-283.
[6]
Lopez E, Del PV, Miguel T, et al. Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model [J]. J Immunol, 2006, 176(3):1943-1950.
[7]
Aksan G, Gedikli O, Keskin K, et al. Is galectin-3 a biomarker, a player-or both-in the presence of coronary atherosclerosis? [J]. J Investig Med, 2016, 64(3):764-770.
[8]
Gonzalez GE, Rhaleb NE, D′Ambrosio MA, et al. Cardiac-deleterious role of galectin-3 in chronic angiotensin Ⅱ-induced hypertension [J]. Am J Physiol Heart Circ Physiol, 2016, 311(5):H1287-H1296.
[9]
Imran TF, Shin HJ, Mathenge N, et al. Meta-analysis of the usefulness of plasma galectin-3 to predict the risk of mortality in patients with heart failure and in the general population [J]. Am J Cardiol, 2017, 119(1):57-64.
[10]
Campo VL, Marchiori MF, Rodrigues LC, et al. Synthetic glycoconjugates inhibitors of tumor-related galectin-3: an update [J]. Glycoconj J, 2016, 33(6):853-876.
[11]
Pugliese G, Iacobini C, Pesce CM, et al. Galectin-3: an emerging all-out player in metabolic disorders and their complications [J]. Glycobiology, 2015, 25(2):136-150.
[12]
Rasmussen NS, Nielsen CT, Houen G, et al. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus [J]. Lupus, 2016, 25(14):1567-1576.
[13]
Winyard PJ, Bao Q, Hughes RC, et al. Epithelial galectin-3 during human nephrogenesis and childhood cystic diseases [J]. J Am Soc Nephrol, 1997, 8(11):1647-1657.
[14]
Bichara M, Attmane-Elakeb A, Brown D, et al. Exploring the role of galectin 3 in kidney function: a genetic approach [J]. Glycobiology, 2006, 16(1):36-45.
[15]
Sasaki S, Bao Q, Hughes RC. Galectin-3 modulates rat mesangial cell proliferation and matrix synthesis during experimental glomerulonephritis induced by anti-Thy1.1 antibodies [J]. J Pathol, 1999, 187(4):481-489.
[16]
Yilmaz H, Inan O, Darcin T, et al. Serum galectin-3 levels were associated with proteinuria in patients with familial mediterranean fever [J]. Clin Exp Nephrol, 2015, 19(3):436-442.
[17]
O′Seaghdha CM, Hwang SJ, Ho JE, et al. Elevated galectin-3 precedes the development of CKD [J]. J Am Soc Nephrol, 2013, 24(9):1470-1477.
[18]
Rebholz CM, Selvin E, Liang M, et al. Plasma galectin-3 levels are associated with the risk of incident chronic kidney disease [J]. Kidney Int, 2018, 93(1):252-259.
[19]
Tan K, Cheung CL, Lee A, et al. Galectin-3 is independently associated with progression of nephropathy in type 2 diabetes mellitus [J]. Diabetologia, 2018, 61(5):1212-1219.
[20]
Drechsler C, Delgado G, Wanner C, et al. Galectin-3, renal function, and clinical outcomes: results from the LURIC and 4D Studies [J]. J Am Soc Nephrol, 2015, 26(9):2213-2221.
[21]
Fernandes BA, Campanhole G, Wang PH, et al. A role for galectin-3 in renal tissue damage triggered by ischemia and reperfusion injury [J]. Transpl Int, 2008, 21(10):999-1007.
[22]
Vansthertem D, Cludts S, Nonclercq D, et al. Immunohistochemical localization of galectins-1 and -3 and monitoring of tissue galectin-binding sites during tubular regeneration after renal ischemia reperfusion in the rat [J]. Histol Histopathol, 2010, 25(11):1417-1429.
[23]
Nishiyama J, Kobayashi S, Ishida A, et al. Up-regulation of galectin-3 in acute renal failure of the rat [J]. Am J Pathol, 2000, 157(3):815-823.
[24]
Dang Z, MacKinnon A, Marson LP, et al. Tubular atrophy and interstitial fibrosis after renal transplantation is dependent on galectin-3 [J]. Transplantation, 2012, 93(5):477-484.
[25]
Tan R, Liu X, Wang J, et al. Alternations of galectin levels after renal transplantation [J]. Clin Biochem, 2014, 47(15):83-88.
[26]
Martinez-Martinez E, Ibarrola J, Fernandez-Celis A, et al. Galectin-3 pharmacological inhibition attenuates early renal damage in spontaneously hypertensive rats [J]. J Hypertens, 2018, 36(2):368-376.
[27]
Frenay AR, Yu L, van der Velde AR, et al. Pharmacological inhibition of galectin-3 protects against hypertensive nephropathy [J]. Am J Physiol Renal Physiol, 2015, 308(5):F500-F509.
[28]
Shen H, Wang J, Min J, et al. Activation of TGF-beta1/alpha-SMA/Col I profibrotic pathway in fibroblasts by galectin-3 contributes to atrial fibrosis in experimental models and patients [J]. Cell Physiol Biochem, 2018, 47(2):851-863.
[29]
Chen WS, Cao Z, Leffler H, et al. Galectin-3 inhibition by a small-molecule inhibitor reduces both pathological corneal neovascularization and fibrosis [J]. Invest Ophthalmol Vis Sci, 2017, 58(1):9-20.
[30]
Streetly MJ, Maharaj L, Joel S, et al. GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death [J]. Blood, 2010, 115(19):3939-3948.
[1] 张艳如, 苏晓乐, 王利华. 丝氨酸蛋白酶Corin与肾脏疾病的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 220-223.
[2] 李德伦, 袁思宇, 刘安琪. 微小RNA-155在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(01): 39-43.
[3] 沈婉君, 王田田, 尹智炜, 谢院生. 免疫电镜技术在肾脏疾病诊断和研究中的应用[J]. 中华肾病研究电子杂志, 2022, 11(04): 219-223.
[4] 张爽, 刘书馨, 牟向伟, 姜博文, 董毳, 由莲莲. 人工智能技术在肾脏病中的应用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(06): 342-346.
[5] 张亚伟, 王兴智. 可溶性ST2蛋白在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 292-295.
[6] 张楷齐, 吴晶魁, 倪兆慧. 铁死亡在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 268-273.
[7] 季红娟, 林娟. 基于分类树方法构建糖尿病肾脏疾病发病风险模型[J]. 中华肾病研究电子杂志, 2021, 10(05): 246-251.
[8] 刘露露, 赖学莉, 谌卫, 郭志勇. 吲哚胺2,3-双加氧酶在肾脏疾病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(04): 224-226.
[9] 杜晓艳, 黄蓉双, 马良, 付平. 脂肪酸结合蛋白4在肾脏疾病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(01): 44-46.
[10] 李琦, 朱晗玉, 徐莉, 韩秋霞, 闫景瑶, 赵焕焕, 丁潇楠, 范秋灵. 足细胞损伤时细胞周期调控及MDM2-p53通路作用的研究进展[J]. 中华肾病研究电子杂志, 2020, 09(04): 176-180.
[11] 王玲, 何娅妮. Parkin的分子结构和生物学功能及其在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2020, 09(02): 74-77.
[12] 田冬琴, 刘开翔, 占志朋, 谢席胜. 糖尿病肾病规范化诊断研究进展[J]. 中华肾病研究电子杂志, 2019, 08(03): 132-137.
[13] 张敏, 费晓炜, 罗耀文, 付奕豪, 张磊, 高大宽. D-阿洛糖对OGD/R诱导的HT22细胞损伤及Gal-3表达的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 135-141.
[14] 陈强, 左丙杰, 刘岩, 苏雷, 孙国华. Galectin-3蛋白在人膀胱移行细胞癌诊断中的应用价值[J]. 中华诊断学电子杂志, 2020, 08(02): 117-120.
[15] 吴桂颖, 胡立群, 李红旗. 血清生长分化因子-15、可溶性人基质裂解素2、半乳糖凝集素-3检测在老年心力衰竭严重程度和预后评估中的应用[J]. 中华老年病研究电子杂志, 2020, 07(02): 12-16.
阅读次数
全文


摘要