[1] |
Franczyk B, Gluba-Brzozka A, Olszewski R, et al. miRNA biomarkers in renal disease [J]. Int Urol Nephrol, 2021, 54(3): 575-588.
|
[2] |
Wu Y, Ding Y, Wang J, et al. Determination of the key ccRCC-related molecules from monolayer network to three-layer network [J]. Cancer Genet, 2021, 256-257: 40-47.
|
[3] |
Kulkarni P, Dasgupta P, Hashimoto Y, et al. A lncRNA TCL6-miR-155 interaction regulates the Src-Akt-EMT network to mediate kidney cancer progression and metastasis [J]. Cancer Res, 2021, 81(6): 1500-1512.
|
[4] |
Meng L, Xing Z, Guo Z, et al. Hypoxia-induced microRNA-155 overexpression in extracellular vesicles promotes renal cell carcinoma progression by targeting FOXO3 [J]. Aging (Albany NY), 2021, 13(7): 9613-9626.
|
[5] |
Wu X, Chang SC, Jin J, et al. NLRP3 in ammasome mediates chronic intermittent hypoxia-induced renal injury implication of the microRNA-155/FOXO3a signaling pathway [J]. J Cell Physiol, 2018, 233(12): 9404-9415.
|
[6] |
Zhang XB, Chen X, Li DJ, et al. Inhibition of miR-155 ameliorates acute kidney injury by apoptosis involving the regulation on TCF4/Wnt/β-catenin pathway [J]. Nephron, 2019, 143(2): 135-147.
|
[7] |
Wang M, Zhang Z, Zhang W. Design, synthesis, and application of chiral bicyclic imidazole catalysts [J]. Acc Chem Res, 2022, 55(18): 2708-2727.
|
[8] |
Song L, Shi S, Jiang W, et al. Protective role of propofol on the kidney during early unilateral ureteral obstruction through inhibition of epithelial-mesenchymal transition [J]. Am J Transl Res, 2016, 8(2): 460-472.
|
[9] |
Xi WW, Zhao XM, Wu MJ, et al. Lack of microRNA-155 ameliorates renal fibrosis by targeting PDE3A/TGF-β1/Smad signaling in mice with obstructive nephropathy [J]. Cell Biol Int, 2018, 42(11): 1523-1532.
|
[10] |
Du J, Jiang S, Hu Z, et al. Vitamin D receptor activation protects against lipopolysaccharide-induced acute kidney injury through suppression of tubular cell apoptosis [J]. Am J Physiol Renal Physiol, 2019, 316(5): F1068-F1077.
|
[11] |
Wang M, Wei J, Shang F, et al. Long noncoding RNA CASC2 ameliorates sepsis-induced acute kidney injury by regulating the miR155 and NF-κB pathway [J]. Int J Mol Med, 2020, 45(5): 1554-1562.
|
[12] |
Bruggeman LA. Common mechanisms of viral injury to the kidney [J]. Adv Chronic Kidney Dis, 2019, 26(3): 164-170.
|
[13] |
Wakeland EK, Liu K, Graham RR, et al. Delineating the genetic basis of systemic lupus erythematosus [J]. Immunity, 2001, 15(3): 397-408.
|
[14] |
Zununi Vahed S, Nakhjavani M, Etemadi J, et al. Altered levels of immune-regulatory microRNAs in plasma samples of patients with lupus nephritis [J]. Bioimpacts, 2018, 8(3): 177-183.
|
[15] |
Blüml S, Bonelli M, Niederreiter B, et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice [J]. Arthritis Rheum, 2011, 63(5): 1281-1288.
|
[16] |
Leiss H, Salzberger W, Jacobs B, et al. MicroRNA 155-deficiency leads to decreased autoantibody levels and reduced severity of nephritis and pneumonitis in pristane-induced lupus [J]. PLoS One, 2017, 12(7): e0181015.
|
[17] |
Kong J, Li LX, Lu ZM, et al. MicroRNA-155 suppresses mesangial cell proliferation and TGF-β1 production via inhibiting CXCR5-ERK signaling pathway in lupus nephritis [J]. Inflammation, 2019, 42(1): 255-263.
|
[18] |
Schena FP, Nistor I. Epidemiology of IgA nephropathy: a global perspective [J]. Semin Nephrol, 2018, 38(5): 435-442.
|
[19] |
Wang G, Kwan BC, Lai FM, et al. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy [J]. Dis Markers, 2011, 30(4): 171-179.
|
[20] |
Liang S, Cai GY, Duan ZY, et al. Urinary sediment miRNAs reflect tubulointerstitial damage and therapeutic response in IgA nephropathy [J]. BMC Nephrol, 2017, 18(1): 63.
|
[21] |
Yang L, Zhang X, Peng W, et al. MicroRNA-155-induced T lymphocyte subgroup drifting in IgA nephropathy [J]. Int Urol Nephrol, 2017, 49(2): 353-361.
|
[22] |
Beltrami C, Simpson K, Jesky M, et al. Association of elevated urinary miR-126, miR-155, and miR-29b with diabetic kidney disease [J]. Am J Pathol, 2018, 188(9): 1982-1992.
|
[23] |
Zhang L, Wu H, Zhao M, et al. Identifying the differentially expressed microRNAs in autoimmunity: a systemic review and meta-analysis [J]. Autoimmunity, 2020, 53(3): 122-136.
|
[24] |
González-Palomo AK, Pérez-Vázquez FJ, Méndez-Rodríguez KB, et al. Profile of urinary exosomal microRNAs and their contribution to diabetic kidney disease through a predictive classification model [J]. Nephrology (Carlton), 2022, 27(6): 484-493.
|
[25] |
STARSurg Collaborative and TASMAN Collaborative. Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study [J]. Lancet Digit Health, 2022, 4(7): e520-e531.
|
[26] |
Wang LP, Gao YZ, Song B, et al. MicroRNAs in the progress of diabetic nephropathy: a systematic review and meta-analysis [J]. Evid Based Complement Alternat Med, 2019, 2019: 3513179.
|
[27] |
Huang Y, Liu Y, Li L, et al. Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury [J]. BMC Nephrol, 2014, 15: 142.
|
[28] |
Lin X, You Y, Wang J, et al. MicroRNA-155 deficiency promotes nephrin acetylation and attenuates renal damage in hyperglycemia-induced nephropathy [J]. Inflammation, 2015, 38(2): 546-554.
|
[29] |
Wang X, Gao Y, Yi W, et al. Inhibition of miRNA-155 alleviates high glucose-induced podocyte inflammation by targeting SIRT1 in diabetic mice [J]. J Diabetes Res, 2021, 2021: 5597394.
|
[30] |
Wang Y, Zheng ZJ, Jia YJ, et al. Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease [J]. J Transl Med, 2018, 16(1): 146.
|
[31] |
Van Aelst LN, Summer G, Li S, et al. RNA profiling in human and murine transplanted hearts: identification and validation of therapeutic targets for acute cardiac and renal allograft rejection[J]. Am J Transplant, 2016,16(1):99-110.
|
[32] |
Zununi Vahed S, Poursadegh Zonouzi A, Ghanbarian H, et al. Differential expression of circulating miR-21, miR-142-3p and miR-155 in renal transplant recipients with impaired graft function[J]. Int Urol Nephrol,2017,49(9):1681-1689.
|
[33] |
李聪聪,赵金艳,吴姣,等. miR-155研究进展[J].生物技术通报,2018, 34(11): 70-82.
|
[34] |
Metzinger-Le Meuth V, Burtey S, Maitrias P, et al. microRNAs in the pathophysiology of CKD-MBD: biomarkers and innovative drugs [J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(1): 337-345.
|
[35] |
Eckersten D, Tsatsanis C, Giwercman A, et al. MicroRNA-155 and anti-Müllerian hormone: new potential markers of subfertility in men with chronic kidney disease [J]. Nephron Extra, 2017, 7(1): 33-41.
|
[36] |
Wang J, Zou Y, Du B, et al. SNP-mediated lncRNA-ENTPD3-AS1 upregulation suppresses renal cell carcinoma via miR-155/HIF-1alpha signaling [J]. Cell Death Dis, 2021, 12(7): 672.
|
[37] |
Liang JY, Tang YQ, Liu ZH, et al. Increased expression of miR-155 correlates with abnormal allograft status in solid organ transplant patients and rat kidney transplantation model [J]. Life Sci, 2019, 227: 51-57.
|
[38] |
Wang B, Wang ZM, Ji JL, et al. Macrophage-derived exosomal miR-155 regulating cardiomyocyte pyroptosis and hypertrophy in uremic cardiomyopathy [J]. JACC Basic Transl Sci, 2020, 5(2):148-166.
|
[39] |
Millán O, Budde K, Sommerer C, et al. Urinary miR-155-5p and CXCL10 as prognostic and predictive biomarkers of rejection, graft outcome and treatment response in kidney transplantation [J]. Br J Clin Pharmacol, 2017, 83(12): 2636-2650.
|
[40] |
Van Aelst LN, Summer G, Li S, et al. RNA profiling in human and murine transplanted hearts: identification and validation of therapeutic targets for acute cardiac and renal allograft rejection [J]. Am J Transplant, 2016, 16(1): 99-110.
|
[41] |
Zununi Vahed S, Poursadegh Zonouzi A, Ghanbarian H, et al. Differential expression of circulating miR-21, miR-142-3p and miR-155 in renal transplant recipients with impaired graft function [J]. Int Urol Nephrol, 2017, 49(9): 1681-1689.
|
[42] |
Soltaninejad E, Nicknam MH, Nafar M, et al. Differential expression of microRNAs in renal transplant patients with acute T-cell mediated rejection [J]. Transpl Immunol, 2015, 33(1): 1-6.
|