切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (04) : 176 -180. doi: 10.3877/cma.j.issn.2095-3216.2020.04.006

所属专题: 文献

综述

足细胞损伤时细胞周期调控及MDM2-p53通路作用的研究进展
李琦1, 朱晗玉2, 徐莉1, 韩秋霞2, 闫景瑶2, 赵焕焕2, 丁潇楠2, 范秋灵1,()   
  1. 1. 110000 中国医科大学附属第一医院肾内科
    2. 100853 北京,解放军总医院第一医学中心肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室
  • 收稿日期:2019-12-15 出版日期:2020-08-28
  • 通信作者: 范秋灵
  • 基金资助:
    国家自然科学基金(61971441;61671479;81800642)

Research progress on cell cycle regulation and role of MDM2-p53 pathway in podocyte injury

Qi Li1, Hanyu Zhu2, Li Xu1, Qiuxia Han2, Jingyao Yan2, Huanhuan Zhao2, Xiaonan Ding2, Qiuling Fan1,()   

  1. 1. Department of Nephrology, First Affiliated Hospital of China Medical University, Shenyang 110000
    2. Department of Nephrology, First Medical Centre of Chinese PLA General Hospital, Beijing 100853; China
  • Received:2019-12-15 Published:2020-08-28
  • Corresponding author: Qiuling Fan
  • About author:
    Corresponding author: Fan Qiuling, Email:
引用本文:

李琦, 朱晗玉, 徐莉, 韩秋霞, 闫景瑶, 赵焕焕, 丁潇楠, 范秋灵. 足细胞损伤时细胞周期调控及MDM2-p53通路作用的研究进展[J]. 中华肾病研究电子杂志, 2020, 09(04): 176-180.

Qi Li, Hanyu Zhu, Li Xu, Qiuxia Han, Jingyao Yan, Huanhuan Zhao, Xiaonan Ding, Qiuling Fan. Research progress on cell cycle regulation and role of MDM2-p53 pathway in podocyte injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(04): 176-180.

在肾脏疾病中,足细胞稳态对其功能的维持至关重要。当成熟足细胞受损后,就会因不适当的周期调控而出现有丝分裂灾难。其中MDM2-p53通路参与调节多种细胞周期信号通路,是平衡足细胞周期调控的核心因素,被认为是有前景的治疗靶点之一。本综述就足细胞损伤时的细胞周期信号、MDM2-p53通路作用以及细胞周期调控的相关药物选择进行了综述。

In kidney diseases, podocyte homeostasis is of vital importance to the maintenance of its function. If mature podocytes get injured, mitotic catastrophe may occur due to inappropriate cell cycle regulation. MDM2-p53 pathway is involved in a variety of signal pathways regulating cell cycle, is the core factor to balance podocyte cycle regulation, and is considered one of the promising therapeutic targets. This review summarized the cell cycle signals, role of MDM2-p53 pathway, and the selection of drugs for cell cycle regulation in podocyte injury.

[1]
张百红,岳红云. 肿瘤检查点相关研究进展[J]. 癌症进展,2015, 13(3):260-264.
[2]
Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2 [J]. Curr Opin Cell Biol, 2009, 21(2): 245-255.
[3]
Griffin SV, Pichler R, Dittrich M, et al. Cell cycle control in glomerular disease [J]. Springer Semin Immunopathol, 2003, 24(4): 441-457.
[4]
Wang J, Li Q, Yuan J, et al. CDK4/6 inhibitor-SHR6390 exerts potent antitumor activity in esophageal squamous cell carcinoma by inhibiting phosphorylated Rb and inducing G1 cell cycle arrest [J]. J Transl Med, 2017, 15(1): 127.
[5]
Osorio J. Cell cycle: repurposing MYC and E2F in the absence of RB [J]. Nat Rev Mol Cell Biol, 2015, 16(9): 516-517.
[6]
Feng C, Yang M, Zhang Y, et al. Cyclic mechanical tension reinforces DNA damage and activates the p53-p21-Rb pathway to induce premature senescence of nucleus pulposus cells [J]. Int J Mol Med, 2018, 41(6): 3316-3326.
[7]
Wu CF, Chiang WC, Lai CF, et al. Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis [J]. Am J Pathol, 2013, 182(1): 118-113.
[8]
Verduzco D, Dovey JS, Shukla AA, et al. Multiple isoforms of CDC25 oppose ATM activity to maintain cell proliferation during vertebrate development [J]. Mol Cancer Res, 2012, 10(11): 1451-1461.
[9]
Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases [J]. Curr Opin Cell Biol, 2006, 18(2): 185-191.
[10]
Lin JS, Susztak K. Podocytes: the weakest link in diabetic kidney disease [J]. Curr Diab Rep, 2016, 16(5): 45.
[11]
Wolf G, Chen S, Ziyadeh FN. From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy [J]. Diabetes, 2005, 54(6): 1626-1634.
[12]
Steffes MW, Schmidt D, McCrery R, et al. Glomerular cell number in normal subjects and in type 1 diabetic patients [J]. Kidney Int, 2001, 59(6): 2104-2113.
[13]
Vitale I, Galluzzi L, Castedo M, et al. Mitotic catastrophe: a mechanism for avoiding genomic instability [J]. Nat Rev Mol Cell Biol, 2011, 12(6): 385-392.
[14]
Vakifahmetoglu H, Olsson M, Zhivotovsky B. Death through a tragedy: mitotic catastrophe [J]. Cell Death Differ, 2008, 15(7): 1153-1162.
[15]
Tang H, Lei CT, Ye C, et al. MDM2 is implicated in high-glucose-induced podocyte mitotic catastrophe via Notch1 signalling [J]. J Cell Mol Med, 2017, 21(12): 3435-3444.
[16]
Migliorini A, Angelotti ML, Mulay SR, et al. The antiviral cytokines IFN-alpha and IFNbeta modulate parietal epithelial cells and promote podocyte loss: implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration [J]. Am J Pathol, 2013, 183(2): 431-440.
[17]
Mulay SR, Thomasova D, Ryu M, et al. Podocyte loss involves MDM2-driven mitotic catastrophe [J]. J Pathol, 2013, 230(3): 322-335.
[18]
Price PM. A role for novel cell-cycle proteins in podocyte biology [J]. Kidney Int, 2010, 77(8): 660-661.
[19]
Barisoni L, Mokrzycki M, Sablay L, et al. Podocyte cell cycle regulation and proliferation in collapsing glomerulopathies [J]. Kidney Int, 2000, 58(1): 137-143.
[20]
Liapis H, Romagnani P, Anders HJ. New insights into the pathology of podocyte loss: mitotic catastrophe [J]. Am J Pathol, 2013, 183(5): 1364-1374.
[21]
Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD [J]. J Am Soc Nephrol, 2015, 26(2): 258-269.
[22]
Hara M, Oohara K, Dai DF, et al. Mitotic catastrophe causes podocyte loss in the urine of human diabetics [J]. Am J Pathol, 2019, 189(2): 248-257.
[23]
Lasagni L, Lazzeri E, Shankland SJ, et al. Podocyte mitosis-a catastrophe [J]. Curr Mol Med, 2013, 13(1): 13-23.
[24]
Hagen M, Pfister E, Kosel A, et al. Cell cycle re-entry sensitizes podocytes to injury induced death [J]. Cell Cycle, 2016, 15(14): 1929-1937.
[25]
Hoshi S, Shu Y, Yoshida F, et al. Podocyte injury promotes progressive nephropathy in zucker diabetic fatty rats [J]. Lab Invest, 2002, 82(1): 25-35.
[26]
Baba M, Wada J, Eguchi J, et al. Galectin-9 inhibits glomerular hypertrophy in db/db diabetic mice via cell-cycle-dependent mechanisms [J]. J Am Soc Nephrol, 2005, 16(11): 3222-3234.
[27]
Marshall CB, Krofft RD, Pippin JW, et al. CDK inhibitor p21 is prosurvival in adriamycin-induced podocyte injury, in vitro and in vivo [J]. Am J Physiol Renal Physiol, 2010, 298(5): F1140-F1151.
[28]
Sun T, Mu D, Cui J. Mathematical model identifies effective P53 accumulation with target gene binding affinity in DNA damage response for cell fate decision [J]. Cell Cycle, 2018, 17(24): 2716-2730.
[29]
Wu D, Prives C. Relevance of the p53-MDM2 axis to aging [J]. Cell Death Differ, 2018, 25(1): 169-179.
[30]
Liu L, Charville GW, Cheung TH, et al. Impaired Notch signaling leads to a decrease in p53 activity and mitotic catastrophe in aged muscle stem cells [J]. Cell Stem Cell, 2018, 23(4): 544-556.
[31]
Zhao K, Yang Y, Zhang G, et al. Regulation of the Mdm2-p53 pathway by the ubiquitin E3 ligase MARCH7 [J]. EMBO Rep, 2018, 19(2): 305-319.
[32]
Thomasova D, Mulay SR, Bruns H, et al. p53-independent roles of MDM2 in NF-kappaB signaling: implications for cancer therapy, wound healing, and autoimmune diseases [J]. Neoplasia, 2012, 14(12): 1097-1101.
[33]
Hilliard S, Aboudehen K, Yao X, et al. Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching [J]. Dev Biol, 2011, 353(2): 354-366.
[34]
Hilliard SA, Yao X, El-Dahr SS. Mdm2 is required for maintenance of the nephrogenic niche [J]. Dev Biol, 2014, 387(1): 1-14.
[35]
Ronconi E, Sagrinati C, Angelotti ML, et al. Regeneration of glomerular podocytes by human renal progenitors [J]. J Am Soc Nephrol, 2009, 20(2): 322-332.
[36]
Wanner N, Hartleben B, Herbach N, et al. Unraveling the role of podocyte turnover in glomerular aging and injury [J]. J Am Soc Nephrol, 2014, 25(4): 707-716.
[37]
Lasagni L, Ballerini L, Angelotti ML, et al. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders [J]. Stem Cells, 2010, 28(9): 1674-1685.
[38]
Kostapanos MS, Liberopoulos EN, Elisaf MS. Statin pleiotropy against renal injury [J]. J Cardiometab Syndr, 2009, 4(1): E4-E9.
[39]
Sakaguchi M, Isono M, Isshiki K, et al. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice [J]. Biochem Biophys Res Commun, 2006, 340(1): 296-301.
[40]
Benigni A, Morigi M, Rizzo P, et al. Inhibiting angiotensin-converting enzyme promotes renal repair by limiting progenitor cell proliferation and restoring the glomerular architecture [J]. Am J Pathol, 2011, 179(2): 628-638.
[41]
Obligado SH, Ibraghimov-Beskrovnaya O, Zuk A, et al. CDK/GSK-3 inhibitors as therapeutic agents for parenchymal renal diseases [J]. Kidney Int, 2008, 73(6): 684-690.
[42]
周谊霞,杨文晴,李龙,等. GSK-3β抑制剂通过wnt/β-catenin调控OPG在DKD大鼠肾组织中作用 [J]. 中国公共卫生,2019, 35(6): 738-741.
[43]
Canaud G, Bonventre JV. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury [J]. Nephrol Dial Transplant, 2015, 30(4): 575-583.
[44]
Donehower LA, Lozano G. 20 years studying p53 functions in genetically engineered mice [J]. Nat Rev Cancer, 2009, 9(11): 831-841.
[45]
Christophorou MA, Ringshausen I, Finch AJ, et al. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression [J]. Nature, 2006, 443(7108): 214-217.
[46]
刘同阳,郭海强,朱美妍,等. 突变型p53与其合成致死基因的研究进展 [J]. 遗传,2015, 37(4): 321-326.
[1] 韩丽飞, 吕建鑫, 王宝偲, 曹欣华, 马骁, 胡浩霖, 张亚男. 分化拮抗非蛋白编码RNA调控乳腺癌细胞增殖的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(01): 21-29.
[2] 杨继鑫, 李南林. 细胞周期蛋白依赖激酶4和6抑制剂研究进展[J]. 中华乳腺病杂志(电子版), 2021, 15(05): 315-319.
[3] 郭亚楠, 郭文静, 蒋兵, 郭红云, 王涛, 张永东, 苏海翔. 黄腐酚抗乳腺癌作用机制的研究进展[J]. 中华乳腺病杂志(电子版), 2021, 15(05): 307-310.
[4] 徐颖, 孙强. 细胞周期蛋白依赖性激酶4/6抑制剂在乳腺癌治疗中的应用[J]. 中华乳腺病杂志(电子版), 2021, 15(04): 247-251.
[5] 孙佳辰, 马景龙, 申传安, 张文, 刘馨竹. 小分子药物Tideglusib通过PI3K/PKB/KIF14通路促进表皮干细胞增殖的机制研究[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 389-397.
[6] 兰伟途, 武峰, 何建昌, 兰文达, 王万宏. miRNA-199a-5p靶向CDCA7L对胶质瘤细胞迁移及侵袭的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 272-278.
[7] 张艳如, 苏晓乐, 王利华. 丝氨酸蛋白酶Corin与肾脏疾病的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 220-223.
[8] 李德伦, 袁思宇, 刘安琪. 微小RNA-155在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(01): 39-43.
[9] 沈婉君, 王田田, 尹智炜, 谢院生. 免疫电镜技术在肾脏疾病诊断和研究中的应用[J]. 中华肾病研究电子杂志, 2022, 11(04): 219-223.
[10] 张爽, 刘书馨, 牟向伟, 姜博文, 董毳, 由莲莲. 人工智能技术在肾脏病中的应用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(06): 342-346.
[11] 张亚伟, 王兴智. 可溶性ST2蛋白在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 292-295.
[12] 张楷齐, 吴晶魁, 倪兆慧. 铁死亡在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 268-273.
[13] 季红娟, 林娟. 基于分类树方法构建糖尿病肾脏疾病发病风险模型[J]. 中华肾病研究电子杂志, 2021, 10(05): 246-251.
[14] 汪泉, 周英妹, 何颖. p27、cyclin-E在子宫内膜异位症中的表达及其临床意义[J]. 中华临床医师杂志(电子版), 2022, 16(06): 546-552.
[15] 邹杰锋, 许云鹏, 张燕子, 隋晓露, 袁树珍, 曾启城, 李丽香, 谢婷妃, 徐子斌, 陈继红. JAK2/STAT3信号通路在局灶节段性肾小球硬化足细胞损伤中的作用及机制[J]. 中华临床医师杂志(电子版), 2021, 15(09): 683-690.
阅读次数
全文


摘要