[1] |
Liu N, Shi Y, Zhuang S. Autophagy in chronic kidney diseases [J]. Kidney Dis (Basel), 2016, 2(1): 37-45.
|
[2] |
Lin TA, Wu VC, Wang CY. Autophagy in chronic kidney diseases [J]. Cells, 2019, 8(1): 61.
|
[3] |
Shinsuke S, Takeshi Y, Yoshitsugu T, et al. Proximal tubule autophagy differs in type 1 and 2 diabetes [J]. J Am Soc Nephrol, 2019, 30(6): 929-945.
|
[4] |
Liu WJ, Luo MN, Tan J, et al. Autophagy activation reduces renal tubular injury induced by urinary proteins [J]. Autophagy, 2014, 10(2): 243-256.
|
[5] |
Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) [J]. Autophagy, 2016, 12(1): 1-222.
|
[6] |
Higgins GC, Nguyen TV, Ramm G, et al. Methods in renal research: measurement of autophagic flux in the renal cortex ex vivo [J]. Nephrology (Carlton), 2018, 23(9): 815-820.
|
[7] |
Liu WJ, Huang WF, Ye L, et al. The activity and role of autophagy in the pathogenesis of diabetic nephropathy [J]. Eur Rev Med Pharmacol Sci, 2018, 22(10): 3182-3189.
|
[8] |
Karim MR, Kanazawa T, Daigaku Y, et al. Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-Ⅱ-E cells [J]. Autophagy, 2007, 3(6): 553-560.
|
[9] |
Shen QQ, Bi X, Ling LL, et al. 1, 25-dihydroxyvitamin D3 attenuates angiotensin II-induced renal injury by inhibiting mitochondrial dysfunction and autophagy [J]. Cell Physiol Biochem, 2018, 51(4): 1751-1762.
|
[10] |
吕晓希,胡卓伟. 自噬流的检测方法 [J]. 药学学报,2016, 51(01): 45-51.
|
[11] |
Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 [J]. Autophagy, 2007, 3(5): 452-460.
|
[12] |
Liu WJ, Li ZH, Chen XC, et al. Blockage of the lysosome-dependent autophagic pathway contributes to complement membrane attack complex-induced podocyte injury in idiopathic membranous nephropathy [J]. Sci Rep, 2017, 7(1): 8643-8660.
|
[13] |
Chudakov DM, Matz MV, Lukyanov S, et al. Fluorescent proteins and their applications in imaging living cells and tissues [J]. Physiol Rev, 2010, 90(3): 1103-1163.
|
[14] |
边帅,赵月,李芳宇,等.自噬检测质粒pLVX-mRFP-EGFP-LC3的构建和表达鉴定[J]. 科学技术与工程,2019, 19(33): 101-104.
|
[15] |
Cocchiaro P, De Pasquale V, Della Morte R, et al. The multifaceted role of the lysosomal protease cathepsins in kidney disease [J]. Front Cell Dev Biol, 2017, 5: 114-125.
|
[16] |
Wang LY, Fan RF, Yang DB, et al. Puerarin reverses cadmium-induced lysosomal dysfunction in primary rat proximal tubular cells via inhibiting Nrf2 pathway [J]. Biochem Pharmacol, 2019, 162: 132-141.
|
[17] |
Song XB, Liu G, Liu F, et al. Autophagy blockade and lysosomal membrane permeabilization contribute to lead-induced nephrotoxicity in primary rat proximal tubular cells [J]. Cell Death Dis, 2017, 8(6): 2863-2875.
|
[18] |
Zhao YX, Zhang WT, Jia Q, et al. High dose vitamin E attenuates diabetic nephropathy via alleviation of autophagic stress [J]. Front Physiol, 2019, 9: 1939-1951.
|
[19] |
Liu WJ, Shen TT, Chen RH, et al. Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy [J]. J Biol Chem, 2015, 290(33): 20499-20510.
|
[20] |
Liu WJ, Gan Y, Huang WF, et al. Lysosome restoration to activate podocyte autophagy: a new therapeutic strategy for diabetic kidney disease [J]. Cell Death Dis, 2019, 10(11): 806.
|
[21] |
Bao J, Shi Y, Tao M, et al. Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy [J]. Clin Sci (Lond), 2018, 132(21): 2299-2322.
|