切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (04) : 170 -175. doi: 10.3877/cma.j.issn.2095-3216.2020.04.005

所属专题: 文献

综述

自噬-溶酶体系统常用检测方法在肾脏病研究中的应用
张文婷1, 王耀献1, 侠晨辉1, 郭敬1, 郑慧娟1, 朱泽兵1, 张帆1, 刘玉宁1, 刘伟敬1,()   
  1. 1. 100710 北京中医药大学附属东直门医院,北京中医药大学肾病研究所,中医内科学教育部重点实验室和北京市重点实验室
  • 收稿日期:2019-11-11 出版日期:2020-08-28
  • 通信作者: 刘伟敬
  • 基金资助:
    国家自然科学基金项目(81774298;81774278); 在读研究生项目(2019-JYB-XS-146)

Application of common detection methods of autophagy-lysosome system in the study of kidney disease

Wenting Zhang1, Yaoxian Wang1, Chenhui Xia1, Jing Guo1, Huijuan Zheng1, Zebing Zhu1, Fan Zhang1, Yuning Liu1, Weijing Liu1,()   

  1. 1. Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Key Laboratory of Ministry of Education for Internal Chinese Medicine, Beijing 100710, China
  • Received:2019-11-11 Published:2020-08-28
  • Corresponding author: Weijing Liu
  • About author:
    Corresponding author: Liu Weijing, Email:
引用本文:

张文婷, 王耀献, 侠晨辉, 郭敬, 郑慧娟, 朱泽兵, 张帆, 刘玉宁, 刘伟敬. 自噬-溶酶体系统常用检测方法在肾脏病研究中的应用[J]. 中华肾病研究电子杂志, 2020, 09(04): 170-175.

Wenting Zhang, Yaoxian Wang, Chenhui Xia, Jing Guo, Huijuan Zheng, Zebing Zhu, Fan Zhang, Yuning Liu, Weijing Liu. Application of common detection methods of autophagy-lysosome system in the study of kidney disease[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(04): 170-175.

溶酶体依赖的自噬降解途径是细胞维持内环境稳态和能量代谢循坏的重要机制之一。几乎所有肾脏疾病均会出现自噬-溶酶体通路变化,而自噬-溶酶体通路变化又影响肾脏疾病进展。了解并掌握自噬-溶酶体系统常用研究方法,有助于观察自噬-溶酶体系统在肾脏疾病中的作用特点。本文主要通过归纳相关研究文献,参照第三版自噬研究指南,从透射电子显微镜法、Atg8/LC3-Ⅱ和SQSTM1/p62蛋白周转、串联荧光显微标记法、溶酶体组织蛋白酶检测、溶酶体相关膜蛋白检测、溶酶体消化功能检定、吖啶橙染色、LTR监测溶酶体酸性环境等方面,对自噬-溶酶体系统常用检测方法在肾脏疾病中的研究应用进行总结,以期为今后更好地研究自噬-溶酶体系统在肾脏疾病中的作用提供参考。

Lysosome-dependent autophagy degradation pathway is one of the important mechanisms by which cells maintain homeostasis and energy metabolism cycle. Almost all kidney diseases have changes in the autophagy-lysosome pathway, which in turn affects the progression of kidney diseases. Understanding and mastering the common research methods of the autophagy-lysosome system are helpful to observe the characteristics of the autophagy-lysosome system in kidney diseases. This article mainly summarized the application of common autophagy-lysosomal system detection methods in kidney diseases by reviewing relevant literature and referring to the third edition of the autophagy research guide, covering the aspects of transmission electron microscopy, autophagy-related gene 8 (Atg8)/microtubule-associated protein 1 light chain 3-Ⅱ (LC3-Ⅱ)and sequestosome-1 (SQSTM1)/p62 protein turnover, tandem fluorescence microlabeling, lysosomal cathepsin detection, detection of lysosomal-associated membrane proteins, lysosomal digestion function testing, acridine orange staining, and LTR monitoring of lysosomal acidic environment, etc. with a view to providing a reference for a better study of the roles of autophagy-lysosome system in kidney diseases in the future.

图1 透射电子显微镜下MCNS患者TECs中自噬结构及自噬泡数量观察
图2 荧光显微镜下HK-2细胞中DQ-卵清蛋白降解与溶酶体膜蛋白LAMP1表达
表1 自噬-溶酶体系统工具调节药物[5]
工具药 作用原理
自噬抑制剂 ?
? 3-甲基腺嘌呤 抑制Ⅲ型PI3K,抑制自噬体的形成
? 渥曼青霉素 抑制PI3K和Ptdlns3K,抑制自噬体的形成
? 巴弗洛霉素A1,氯喹,NH4CL,长春花碱 抑制自噬体与溶酶体融合
? Vacuolin-1 抑制自噬体-溶酶体融合,但具有可逆性
? 毒胡萝卜素 阻止自噬体与内涵体融合
? E-64d,亮抑酶肽,胃泌素A,蛋白酶体抑制剂 抑制溶酶体蛋白酶活性,损伤溶酶体降解功能
? 白桦脂酸 同时损伤线粒体与溶酶体,降低溶酶体降解能力
? NED-19 抑制溶酶体TPCN和NAADP介导的自噬
? 伏马菌素B 神经酰胺合成抑制剂,干扰巨自噬
? 病原体 一种病毒编码的自噬抑制剂,包括单纯疱疹病毒的神经毒性因子ICP34.5、卡波西肉瘤相关疱疹病毒vBCL2、γ-疱疹病毒68 M11、禽流感病毒vBCL2、1型艾滋病病毒Nef蛋白、甲型流感病毒M2
自噬激活剂 ?
? 雷帕霉素,依维莫司 mTORC1抑制剂,诱导巨自噬
? KU-0063794,TMS,Torin 1 mTOR抑制剂,诱导巨自噬
? ESC8,MLN4924 抑制mTOR通路,诱导自噬
? NVP-BEZ235 PIK3CA/p110和MTOR的共同抑制剂,激活自噬
? 白藜芦醇,RSVAs AMPK激活,诱导自噬
? PMI 激活p62介导的线粒体自噬
? 10-NCP 抑制AKT,诱导神经元自噬
? NAADP-AM 激活溶酶体TPCN,诱导自噬
? 衣霉素 抑制糖基化,通过内质网应激诱导自噬
? 柴胡皂甙-d 诱导自噬依赖性细胞死亡
? Akti-1/2 促进B细胞淋巴瘤的自噬
? 海藻糖 一种可能与治疗不同神经退行性疾病有关的自噬诱导物质
? Tat-Becline1 一种细胞穿透肽,能有效诱导巨自噬
? AR7 拮抗RARA/ RARα,选择性CMA增强剂
其他 ?
? 17-AAG CMA抑制剂;但在某些系统(如神经元)中可通过激活ULK1诱导的自噬和线粒体自噬
[1]
Liu N, Shi Y, Zhuang S. Autophagy in chronic kidney diseases [J]. Kidney Dis (Basel), 2016, 2(1): 37-45.
[2]
Lin TA, Wu VC, Wang CY. Autophagy in chronic kidney diseases [J]. Cells, 2019, 8(1): 61.
[3]
Shinsuke S, Takeshi Y, Yoshitsugu T, et al. Proximal tubule autophagy differs in type 1 and 2 diabetes [J]. J Am Soc Nephrol, 2019, 30(6): 929-945.
[4]
Liu WJ, Luo MN, Tan J, et al. Autophagy activation reduces renal tubular injury induced by urinary proteins [J]. Autophagy, 2014, 10(2): 243-256.
[5]
Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) [J]. Autophagy, 2016, 12(1): 1-222.
[6]
Higgins GC, Nguyen TV, Ramm G, et al. Methods in renal research: measurement of autophagic flux in the renal cortex ex vivo [J]. Nephrology (Carlton), 2018, 23(9): 815-820.
[7]
Liu WJ, Huang WF, Ye L, et al. The activity and role of autophagy in the pathogenesis of diabetic nephropathy [J]. Eur Rev Med Pharmacol Sci, 2018, 22(10): 3182-3189.
[8]
Karim MR, Kanazawa T, Daigaku Y, et al. Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-Ⅱ-E cells [J]. Autophagy, 2007, 3(6): 553-560.
[9]
Shen QQ, Bi X, Ling LL, et al. 1, 25-dihydroxyvitamin D3 attenuates angiotensin II-induced renal injury by inhibiting mitochondrial dysfunction and autophagy [J]. Cell Physiol Biochem, 2018, 51(4): 1751-1762.
[10]
吕晓希,胡卓伟. 自噬流的检测方法 [J]. 药学学报,2016, 51(01): 45-51.
[11]
Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 [J]. Autophagy, 2007, 3(5): 452-460.
[12]
Liu WJ, Li ZH, Chen XC, et al. Blockage of the lysosome-dependent autophagic pathway contributes to complement membrane attack complex-induced podocyte injury in idiopathic membranous nephropathy [J]. Sci Rep, 2017, 7(1): 8643-8660.
[13]
Chudakov DM, Matz MV, Lukyanov S, et al. Fluorescent proteins and their applications in imaging living cells and tissues [J]. Physiol Rev, 2010, 90(3): 1103-1163.
[14]
边帅,赵月,李芳宇,等.自噬检测质粒pLVX-mRFP-EGFP-LC3的构建和表达鉴定[J]. 科学技术与工程,2019, 19(33): 101-104.
[15]
Cocchiaro P, De Pasquale V, Della Morte R, et al. The multifaceted role of the lysosomal protease cathepsins in kidney disease [J]. Front Cell Dev Biol, 2017, 5: 114-125.
[16]
Wang LY, Fan RF, Yang DB, et al. Puerarin reverses cadmium-induced lysosomal dysfunction in primary rat proximal tubular cells via inhibiting Nrf2 pathway [J]. Biochem Pharmacol, 2019, 162: 132-141.
[17]
Song XB, Liu G, Liu F, et al. Autophagy blockade and lysosomal membrane permeabilization contribute to lead-induced nephrotoxicity in primary rat proximal tubular cells [J]. Cell Death Dis, 2017, 8(6): 2863-2875.
[18]
Zhao YX, Zhang WT, Jia Q, et al. High dose vitamin E attenuates diabetic nephropathy via alleviation of autophagic stress [J]. Front Physiol, 2019, 9: 1939-1951.
[19]
Liu WJ, Shen TT, Chen RH, et al. Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy [J]. J Biol Chem, 2015, 290(33): 20499-20510.
[20]
Liu WJ, Gan Y, Huang WF, et al. Lysosome restoration to activate podocyte autophagy: a new therapeutic strategy for diabetic kidney disease [J]. Cell Death Dis, 2019, 10(11): 806.
[21]
Bao J, Shi Y, Tao M, et al. Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy [J]. Clin Sci (Lond), 2018, 132(21): 2299-2322.
[1] 王丽萍, 徐磊, 蒋天安, 强嘉璘. 微血管成像联合Qpack定量分析技术评估慢性肾脏病患者肾皮质区血流灌注的价值[J]. 中华医学超声杂志(电子版), 2023, 20(03): 292-296.
[2] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[3] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[4] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[5] 周川鹏, 杨浩, 魏微阳, 王奇, 黄亚强. 微创与标准通道经皮肾镜治疗肾结石合并肾功能不全的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 470-475.
[6] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[7] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[8] 杨长沅, 凌曦淘, 丘伽美, 段若兰, 李琴, 林玉婕, 秦新东, 侯海晶, 卢富华, 苏国彬. 慢性肾脏病患者衰弱的筛查/评估工具研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 229-233.
[9] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[10] 王诗远, 张爱华. 慢性肾脏病相关认知障碍的发生机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(03): 163-167.
[11] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[12] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[13] 李昌艳, 顾芳, 刘娟, 唐明敏. 非布司他治疗慢性肾脏病伴发高尿酸血症的疗效及预后影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(03): 279-284.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要