切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2023, Vol. 12 ›› Issue (03) : 163 -167. doi: 10.3877/cma.j.issn.2095-3216.2023.03.008

综述

慢性肾脏病相关认知障碍的发生机制研究进展
王诗远, 张爱华()   
  1. 100053 首都医科大学宣武医院肾内科
  • 收稿日期:2022-04-06 出版日期:2023-06-28
  • 通信作者: 张爱华
  • 基金资助:
    国家自然科学基金(81873619)

Progress of research on the mechanism of chronic kidney disease-related cognitive impairment

Shiyuan Wang, Aihua Zhang()   

  1. Department of Nephrology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
  • Received:2022-04-06 Published:2023-06-28
  • Corresponding author: Aihua Zhang
引用本文:

王诗远, 张爱华. 慢性肾脏病相关认知障碍的发生机制研究进展[J/OL]. 中华肾病研究电子杂志, 2023, 12(03): 163-167.

Shiyuan Wang, Aihua Zhang. Progress of research on the mechanism of chronic kidney disease-related cognitive impairment[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(03): 163-167.

慢性肾脏病(CKD)患者肾功能下降,内分泌及代谢功能发生紊乱,导致氧化应激、内皮功能障碍、血管钙化、尿毒症毒素蓄积、脑血流调节功能障碍、神经前体细胞受损,因而CKD患者发生认知障碍(CI)的风险增加。CKD相关CI的发病机制尚未完全明确,缺乏有效的治疗措施。CI与CKD患者药物依从性差、死亡率增加有关。充分了解CI的发病机制、寻找有效的治疗方法,对于降低CKD患者的CI风险具有重要意义。本文综述了近年来有关CKD患者CI发病机制的研究进展。

Patients with chronic kidney disease (CKD) generally have progressive renal decline and endocrinologic and metabolic derailments, resulting in oxidative stress, endothelial dysfunction, vascular calcification, uremic toxin retention, dysfunction of cerebral blood flow autoregulation, and impairment of neural precursor cells. Therefore, individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing cognitive impairment (CI). However, the underlying mechanism for CKD-related CI remains incompletely understood. Meanwhile, effective therapeutic interventions for CKD-related CI are lacking. Cognitive dysfunction has been linked to poor compliance with medications, and is associated with greater mortality. Thus, understanding the pathogenesis of CKD-related CI and developing effective therapeutic interventions is important to minimize the risk of cognitive injury in patients with CKD. This review summarized the progress of research on the molecular and cellular mechanisms involved in the pathogenesis of CI following CKD.

图1 慢性肾脏病患者认知障碍的可能机制注:慢性肾脏病患者肾损伤与其传统危险因素高血压、糖尿病和高血脂等可形成恶性循环;同时,肾损伤可导致非传统危险因素成纤维细胞生长因子23(fibroblast growth factor 23,FGF23)和甲状旁腺素(parathyroid hormone,PTH)升高、α-Klotho蛋白下降及钙磷代谢紊乱,引发尿毒症毒素累积,胶质淋巴系统功能障碍等;此外,遗传因素也是引发肾损伤的危险因素。之后,通过介导脑血管病变、内皮功能失调、神经细胞受损、大脑局部氧饱和度下降及透析相关的脑损伤等,终将导致认知障碍
[1]
Bikbov B, Purcell C, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J]. Lancet, 2020, 395(10225): 709-733.
[2]
Kalantar-Zadeh K, Jafar TH, Nitsch D, et al. Chronic kidney disease [J]. Lancet, 2021, 398(10302): 786-802.
[3]
Berger I, Wu S, Masson P, et al. Cognition in chronic kidney disease: a systematic review and meta-analysis [J]. BMC Med, 2016, 14(1): 206.
[4]
Seliger SL, Wendell CR, Waldstein SR, et al. Renal function and long-term decline in cognitive function: the Baltimore Longitudinal Study of Aging [J]. Am J Nephrol, 2015, 41(4-5): 305-312.
[5]
Etgen T, Chonchol M, Förstl H, et al. Chronic kidney disease and cognitive impairment: a systematic review and meta-analysis [J]. Am J Nephrol, 2012, 35(5): 474-482.
[6]
Viggiano D, Wagner CA, Martino G, et al. Mechanisms of cognitive dysfunction in CKD [J]. Nat Rev Nephrol, 2020, 16(8): 452-469.
[7]
Raphael KL, Wei G, Greene T, et al. Cognitive function and the risk of death in chronic kidney disease [J]. Am J Nephrol, 2012, 35(1): 49-57.
[8]
Griva K, Stygall J, Hankins M, et al. Cognitive impairment and 7-year mortality in dialysis patients [J]. Am J Kidney Dis, 2010, 56(4): 693-703.
[9]
van ZA, Wong G, Ruospo M, et al. Associations of cognitive function and education level with all-cause mortality in adults on hemodialysis: findings from the COGNITIVE-HD Study [J]. Am J Kidney Dis, 2019, 74(4): 452-462.
[10]
Marcos G, Santabárbara J, Lopez-Anton R, et al. Conversion to dementia in mild cognitive impairment diagnosed with DSM-5 criteria and with Petersen′s criteria [J]. Acta Psychiatr Scand, 2016, 133(5): 378-385.
[11]
Armstrong A. Risk factors for Alzheimer′s disease [J]. Folia Neuropathol, 2019, 57(2): 87-105.
[12]
Lipnicki DM, Crawford J, Kochan NA, et al. Risk factors for mild cognitive impairment, dementia and mortality: the Sydney memory and ageing study [J]. J Am Med Dir Assoc, 2017, 18(5): 388-395.
[13]
Tamura MK, Yaffe K. Dementia and cognitive impairment in ESRD: diagnostic and therapeutic strategies [J]. Kidney Int, 2011, 79(1): 14-22.
[14]
Kuo YT, Li CY, Sung JM, et al. Risk of dementia in patients with end-stage renal disease under maintenance dialysis-a nationwide population-based study with consideration of competing risk of mortality [J]. Alzheimers Res Ther, 2019, 11(1): 1-12.
[15]
Drew DA, Weiner DE, Sarnak MJ. Cognitive impairment in CKD: pathophysiology, management, and prevention [J]. Am J Kidney Dis, 2019, 74(6): 782-790.
[16]
Lin YT, Wu PH, Liang SS, et al. Protein-bound uremic toxins are associated with cognitive function among patients undergoing maintenance hemodialysis [J]. Sci Rep, 2019, 9(1): 20388.
[17]
Ravid JD, Kamel MH, Chitalia VC. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease [J]. Nat Rev Nephrol, 2021, 17(6): 402-416.
[18]
Walker JA, Richards S, Belghasem ME, et al. Temporal and tissue-specific activation of aryl hydrocarbon receptor in discrete mouse models of kidney disease [J]. Kidney Int, 2020, 97(3): 538-550.
[19]
Dou L, Sallée M, Cerini C, et al. The cardiovascular effect of the uremic solute indole-3 acetic acid [J]. J Am Soc Nephrol, 2015, 26(4): 876-887.
[20]
Adesso S, Paterniti I, Cuzzocrea S, et al. AST-120 reduces neuroinflammation induced by indoxyl sulfate in glial cells [J]. J Clin Med, 2018, 7(10): 365.
[21]
Tsuruya K, Yoshida H. Brain atrophy and cognitive impairment in chronic kidney disease [J]. Contrib Nephrol, 2018, 196: 27-36.
[22]
Lee JH, Yoon YM, Lee SH. TUDCA-treated mesenchymal stem cells protect against ER stress in the hippocampus of a murine chronic kidney disease model [J]. Int J Mol Sci, 2019, 20(3): 613.
[23]
Miller LM, Rifkin D, Lee AK, et al. Association of urine biomarkers of kidney tubule injury and dysfunction with frailty index and cognitive function in persons with CKD in SPRINT [J]. Am J Kidney Dis, 2021, 78(4): 530-540.
[24]
Lidgard B, Bansal N, Zelnick LR, et al. Association of proximal tubular secretory clearance with long-term decline in cognitive function [J]. J Am Soc Nephrol, 2022, 33(7): 1391-1401.
[25]
Cunningham C, Hennessy E. Co-morbidity and systemic inflammation as drivers of cognitive decline: new experimental models adopting a broader paradigm in dementia research [J]. Alzheimers Res Ther, 2015, 7(1): 33.
[26]
Tamura MK, Tam K, Vittinghoff E, et al. Inflammatory markers and risk for cognitive decline in chronic kidney disease: the CRIC study [J]. Kidney Int Rep, 2017, 2(2): 192-200.
[27]
Meng C, Zhang JC, Shi RL, et al. Inhibition of interleukin-6 abolishes the promoting effects of pair housing on post-stroke neurogenesis [J]. Neuroscience, 2015, 307: 160-170.
[28]
Huang C, Irwin MG, Wong GTC, et al. Evidence of the impact of systemic inflammation on neuroinflammation from a non-bacterial endotoxin animal model [J]. J Neuroinflammation, 2018, 15(1): 147.
[29]
Sedaghat S, Vernooij MW, Loehrer E, et al. Kidney function and cerebral blood flow: the rotterdam study [J]. J Am Soc Nephrol, 2016, 27(3): 715-721.
[30]
Miyazawa H, Ookawara S, Ito K, et al. Association of cerebral oxygenation with estimated glomerular filtration rate and cognitive function in chronic kidney disease patients without dialysis therapy [J]. PLoS One, 2018, 13(6): e0199366.
[31]
Kovarova L, Valerianova A, Kmentova T, et al. Low cerebral oxygenation is associated with cognitive impairment in chronic hemodialysis patients [J]. Nephron, 2018, 139(2): 113-119.
[32]
Findlay MD, Dawson J, Dickie DA, et al. Investigating the relationship between cerebral blood flow and cognitive function in hemodialysis patients [J]. J Am Soc Nephrol, 2019, 30(1): 147-158.
[33]
Eldehni MT, Odudu A, McIntyre CW. Randomized clinical trial of dialysate cooling and effects on brain white matter [J]. J Am Soc Nephrol, 2015, 26(4): 957-965.
[34]
Aggarwal HK, Jain D, Bhavikatti A. Cognitive dysfunction in patients with chronic kidney disease [J]. Saudi J Kidney Dis Transpl, 2020, 31(4): 796-804.
[35]
Lourida I, Thompson-Coon J, Dickens CM, et al. Parathyroid hormone, cognitive function and dementia: a systematic review [J]. PLoS One, 2015, 10(5): e0127574.
[36]
Kuriyama N, Ozaki E, Mizuno T, et al. Association between α-Klotho and deep white matter lesions in the brain: a pilot case control study using brain MRI [J]. J Alzheimers Dis, 2018, 61(1): 145-155.
[37]
McGrath ER, Himali JJ, Levy D, et al. Circulating fibroblast growth factor 23 levels and incident dementia: the Framingham heart study [J]. PLoS One, 2019, 14(3): e0213321.
[38]
Mayne PE, Burne THJ. Vitamin D in synaptic plasticity, cognitive function, and neuropsychiatric illness [J]. Trends Neurosci, 2019, 42(4): 293-306.
[39]
Mazumder MK, Paul R, Bhattacharya P, et al. Neurological sequel of chronic kidney disease: from diminished acetylcholinesterase activity to mitochondrial dysfunctions, oxidative stress and inflammation in mice brain [J]. Sci Rep, 2019, 9(1): 3097.
[40]
Kim JW, Ha GY, Jung YW. Chronic renal failure induces cell death in rat hippocampal CA1 via upregulation of αCaMKII/NR2A synaptic complex and phosphorylated GluR1-containing AMPA receptor cascades [J]. Kidney Res Clin Pract, 2014, 33(3): 132-138.
[41]
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β [J]. Sci Transl Med, 2012, 4(147): 147ra111.
[42]
Heo CM, Lee DA, Park KM, et al. Glymphatic system dysfunction in patients with early chronic kidney disease [J]. Front Neurol, 2022, 13: 976089.
[43]
Heo CM, Lee WH, Park BS, et al. Glymphatic dysfunction in patients with end-stage renal disease [J]. Front Neurol, 2022, 12: 809438.
[44]
Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders [J]. Lancet Neurol, 2018, 17(11): 1016-1024.
[45]
Jiang Q, Zhang L, Ding G, et al. Impairment of the glymphatic system after diabetes [J]. J Cereb Blood Flow Metab, 2017, 37(4): 1326-1337.
[46]
Mortensen KN, Sanggaard S, Mestre H, et al. Impaired glymphatic transport in spontaneously hypertensive rats [J]. J Neurosci, 2019, 39(32): 6365-6377.
[47]
Verbitsky M, Kogon AJ, Matheson M, et al. Genomic disorders and neurocognitive impairment in pediatric CKD [J]. J Am Soc Nephrol, 2017, 28(8): 2303-2309.
[48]
Mengel-From J, Soerensen M, Nygaard M, et al. Genetic variants in klotho associate with cognitive function in the oldest old group [J]. J Gerontol A Biol Sci Med Sci, 2016, 71(9): 1151-1159.
[49]
Joshee P, Wood AG, Wood ER, et al. Meta-analysis of cognitive functioning in patients following kidney transplantation [J]. Nephrol Dial Transplant, 2018, 33(7): 1268-1277.
[50]
Lepping RJ, Montgomery RN, Sharma P, et al. Normalization of cerebral blood flow, neurochemicals, and white matter integrity after kidney transplantation [J]. J Am Soc Nephrol, 2021, 32(1): 177-187.
[51]
McAfoose J, Baune BT. Evidence for a cytokine model of cognitive function [J]. Neurosci Biobehav Rev, 2009, 33(3): 355-366.
[52]
Skardelly M, Glien A, Groba C, et al. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro [J]. Exp Cell Res, 2013, 319(20): 3170-3181.
[53]
Kashgary A, Khojah A, Bamalan B, et al. Effect of hemodiafiltration versus hemodialysis on cognitive function among patients with end-stage renal disease: a multicenter study [J]. Cureus, 2021, 13(11): e19719.
[54]
Lin YT, Wu PH, Kuo MC, et al. Comparison of dementia risk between end stage renal disease patients with hemodialysis and peritoneal dialysis-a population based study [J]. Sci Rep, 2015, 5: 8224.
[1] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[2] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[3] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[4] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[5] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[6] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[7] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[8] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[9] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[10] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[11] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[12] 杭丽, 张耀辉, 孙文恺. 参菝抗瘤液对结直肠腺瘤性息肉术后肠道功能、炎症指标及复发情况的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 413-416.
[13] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[14] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?