切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (05) : 268 -273. doi: 10.3877/cma.j.issn.2095-3216.2021.05.006

综述

铁死亡在肾脏疾病中的作用研究进展
张楷齐1, 吴晶魁1, 倪兆慧1,()   
  1. 1. 200127 上海交通大学医学院附属仁济医院
  • 收稿日期:2021-04-21 出版日期:2021-10-20
  • 通信作者: 倪兆慧
  • 基金资助:
    国家自然科学基金面上项目(82070693、81770666); 上海交通大学医学院多中心临床研究项目(DLY201805); 上海申康医院发展中心促进市级医院临床技能与临床创新能力三年行动计划(SHDC2020CR3029B)

Progress of research on the role of ferroptosis in kidney diseases

Kaiqi Zhang1, Jingkui Wu1, Zhaohui Ni1,()   

  1. 1. Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
  • Received:2021-04-21 Published:2021-10-20
  • Corresponding author: Zhaohui Ni
引用本文:

张楷齐, 吴晶魁, 倪兆慧. 铁死亡在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 268-273.

Kaiqi Zhang, Jingkui Wu, Zhaohui Ni. Progress of research on the role of ferroptosis in kidney diseases[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(05): 268-273.

铁死亡是一种新发现的调控性细胞死亡方式,本质为铁介导的脂质过氧化累积引发细胞氧化还原系统失衡。铁死亡通路的关键机制包括胱氨酸/谷氨酸逆转运体、谷胱甘肽过氧化酶4及多不饱和脂肪酸生物合成路径等,诱导剂与抑制剂通过调节相关靶点分别促进与抑制铁死亡。现有研究提示铁死亡参与了多种肾脏疾病的发生发展,本文就铁死亡在肾脏疾病中的作用研究最新进展作一综述。

Ferroptosis is a newly discovered mode of regulated cell death, which is caused by the imbalance of cellular redox system mediated by the accumulation of iron-mediated lipid peroxidation. The key mechanisms of ferroptosis pathway include cystine/glutamate antiporter, glutathione peroxidase 4, and polyunsaturated fatty acid biosynthesis pathways, etc. The inducers and inhibitors can promote or suppress ferroptosis by regulating the related targets, respectively. Existing researches suggested that ferroptosis was involved in the occurrence and development of a variety of kidney diseases. This article reviewed the latest progress of research on the role of ferroptosis in kidney diseases.

图1 铁死亡与肾脏病主要联系机制
[1]
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease [J]. Cell, 2017, 171(2): 273-285.
[2]
Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015 [J]. Cell Death Differ, 2015, 22(1): 58-73.
[3]
Tang D, Kang R, Berghe TV, et al. The molecular machinery of regulated cell death [J]. Cell Res, 2019, 29(5): 347-364.
[4]
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 [J]. Cell Death Differ, 2018, 25(3): 486-541.
[5]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death [J]. Cell, 2012, 149(5): 1060-1072.
[6]
Basit F, van Oppen LM, Schöckel L, et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells [J]. Cell Death Dis, 2017, 8(3): e2716.
[7]
Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation [J]. Trends Cell Biol, 2016, 26(3): 165-176.
[8]
Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation [J]. Cell Death Dis, 2019, 10(11): 822.
[9]
Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy [J]. Protein Cell, 2021, 12(8): 599-620.
[10]
Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis [J]. Cell, 2018, 172(3): 409-422.
[11]
Firsov AM, Fomich MA, Bekish AV, et al. Threshold protective effect of deuterated polyunsaturated fatty acids on peroxidation of lipid bilayers [J]. FEBS J, 2019, 286(11): 2099-2117.
[12]
Dixon SJ, Winter GE, Musavi LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death [J]. ACS Chem Biol, 2015, 10(7): 1604-1609.
[13]
Yuan H, Li X, Zhang X, et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis [J]. Biochem Biophys Res Commun, 2016, 478(3): 1338-1343.
[14]
Dolma S, Lessnick SL, Hahn WC, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells [J]. Cancer Cell, 2003, 3(3): 285-296.
[15]
Fang D, Maldonado EN. VDAC regulation: a mitochondrial target to stop cell proliferation [J]. Adv Cancer Res, 2018, 138: 41-69.
[16]
Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels [J]. Nature, 2007, 447(7146): 864-868.
[17]
Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells [J]. Chem Biol, 2008, 15(3): 234-245.
[18]
Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4 [J]. Cell, 2014, 156(1-2): 317-331.
[19]
Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis [J]. Nature, 2019, 575(7784): 688-692.
[20]
Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor [J]. Nature, 2019, 575(7784): 693-698.
[21]
Chu J, Liu CX, Song R, et al. Ferrostatin-1 protects HT-22 cells from oxidative toxicity [J]. Neural Regen Res, 2020, 15(3): 528-536.
[22]
Linkermann A, Skouta R, Himmerkus N, et al. Synchronized renal tubular cell death involves ferroptosis [J]. Proc Natl Acad Sci USA, 2014, 111(47): 16836-16841.
[23]
Sheng X, Shan C, Liu J, et al. Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1 [J]. Phys Chem Chem Phys, 2017, 19(20): 13153-13159.
[24]
Yoo SE, Chen L, Na R, et al. Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain [J]. Free Radic Biol Med, 2012, 52(9): 1820-1827.
[25]
Devos D, Moreau C, Devedjian JC, et al. Targeting chelatable iron as a therapeutic modality in Parkinson′s disease [J]. Antioxid Redox Signal, 2014, 21(2): 195-210.
[26]
Li W, Feng G, Gauthier JM, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation [J]. J Clin Invest, 2019, 129(6): 2293-2304.
[27]
Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression [J]. Nature, 2015, 520(7545): 57-62.
[28]
Billesbølle CB, Azumaya CM, Kretsch RC, et al. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms [J]. Nature, 2020, 586(7831): 807-811.
[29]
Norden AG, Lapsley M, Lee PJ, et al. Glomerular protein sieving and implications for renal failure in Fanconi syndrome [J]. Kidney Int, 2001, 60(5): 1885-1892.
[30]
Liu BC, Tang TT, Lv LL, et al. Renal tubule injury: a driving force toward chronic kidney disease [J]. Kidney Int, 2018, 93(3): 568-579.
[31]
van Swelm RPL, Wetzels JFM, Swinkels DW. The multifaceted role of iron in renal health and disease [J]. Nat Rev Nephrol, 2020, 16(2): 77-98.
[32]
王利华,苏晓乐. 急性肾损伤的诊断和早期预警[J/CD]. 中华肾病研究电子杂志2019, 8(4): 145-149.
[33]
Zager RA, Burkhart K. Myoglobin toxicity in proximal human kidney cells: roles of Fe, Ca2+,H2O2, and terminal mitochondrial electron transport [J]. Kidney Int, 1997, 51(3): 728-738.
[34]
Zarjou A, Bolisetty S, Joseph R, et al. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury [J]. J Clin Invest, 2013, 123(10): 4423-4434.
[35]
Choi N, Whitlock R, Klassen J, et al. Early intraoperative iron-binding proteins are associated with acute kidney injury after cardiac surgery [J]. J Thorac Cardiovasc Surg, 2019, 157(1): 287-297.
[36]
Hu Z, Zhang H, Yi B, et al. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis [J]. Cell Death Dis, 2020, 11(1): 73.
[37]
Martin-Sanchez D, Ruiz-Andres O, Poveda J, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI [J]. J Am Soc Nephrol, 2017, 28(1): 218-229.
[38]
Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice [J]. Nat Cell Biol, 2014, 16(12): 1180-1191.
[39]
Wang Y, Bi R, Quan F, et al. Ferroptosis involves in renal tubular cell death in diabetic nephropathy [J]. Eur J Pharmacol, 2020, 888: 173574.
[40]
Li S, Zheng L, Zhang J, et al. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy [J]. Free Radic Biol Med, 2021, 162: 435-449.
[41]
l′Hoste S, Chargui A, Belfodil R, et al. CFTR mediates apoptotic volume decrease and cell death by controlling glutathione efflux and ROS production in cultured mice proximal tubules [J]. Am J Physiol Renal Physiol, 2010, 298(2): F435-F453.
[42]
Simões F, Ousingsawat J, Wanitchakool P, et al. CFTR supports cell death through ROS-dependent activation of TMEM16F (anoctamin 6) [J]. Pflugers Arch, 2018, 470(2): 305-314.
[43]
Schreiber R, Buchholz B, Kraus A, et al. Lipid peroxidation drives renal cyst growth in vitro through activation of TMEM16A [J]. J Am Soc Nephrol, 2019, 30(2): 228-242.
[44]
Tang S, Xiao X. Ferroptosis and kidney diseases [J]. Int Urol Nephrol, 2020, 52(3): 497-503.
[45]
Ikeda Y, Ozono I, Tajima S, et al. Iron chelation by deferoxamine prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction [J]. PLoS One, 2014, 9(2): e89355.
[46]
Zou Y, Palte MJ, Deik AA, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis [J]. Nat Commun, 2019, 10(1): 1617.
[1] 刘思嘉, 张喜玲, 黄翠君, 刘云建. 铁死亡在常见肝脏疾病中的研究进展[J]. 中华普通外科学文献(电子版), 2022, 16(03): 231-235.
[2] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[3] 莫建涛, 杨沛泽, 曹瑞奇, 马清涌, 王铮, 仵正, 周灿灿. 基于生物信息学分析构建肝内胆管细胞癌患者铁死亡相关lncRNA预后模型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 185-189.
[4] 刘成飞, 徐少强, 姚添, 黄河. 谷胱甘肽在结直肠癌增殖转移及诊疗中的研究进展[J]. 中华结直肠疾病电子杂志, 2022, 11(06): 506-510.
[5] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[6] 张艳如, 苏晓乐, 王利华. 丝氨酸蛋白酶Corin与肾脏疾病的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 220-223.
[7] 李德伦, 袁思宇, 刘安琪. 微小RNA-155在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(01): 39-43.
[8] 李燕辰, 李建宁, 涂晓文, 李峰生. 核辐射导致急性肾损伤中铁死亡的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 338-341.
[9] 沈婉君, 王田田, 尹智炜, 谢院生. 免疫电镜技术在肾脏疾病诊断和研究中的应用[J]. 中华肾病研究电子杂志, 2022, 11(04): 219-223.
[10] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[11] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[12] 谢艾伦, 郑冬燕, 蔡紫薇, 卢仁建, 彭永明, 张贺, 陈家隆. 鱼藤酮通过降低线粒体钙离子单向转运体蛋白表达促进多巴胺能神经元铁死亡[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 71-78.
[13] 李民昌, 马长林. 自噬调控的细胞铁死亡及在肿瘤中影响的研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 140-144.
[14] 刘倩, 李鑫, 刘欣, 苑金香. 铁死亡在阿尔茨海默病发病机制中的研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 211-215.
[15] 黄朝晖, 刘仁华, 杨立文. 血液透析联合血液灌流对尿毒症患者机体铁及内环境代谢的影响及相关性分析[J]. 中华肥胖与代谢病电子杂志, 2022, 08(03): 169-173.
阅读次数
全文


摘要