[1] |
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease [J]. Cell, 2017, 171(2): 273-285.
|
[2] |
Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015 [J]. Cell Death Differ, 2015, 22(1): 58-73.
|
[3] |
Tang D, Kang R, Berghe TV, et al. The molecular machinery of regulated cell death [J]. Cell Res, 2019, 29(5): 347-364.
|
[4] |
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 [J]. Cell Death Differ, 2018, 25(3): 486-541.
|
[5] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death [J]. Cell, 2012, 149(5): 1060-1072.
|
[6] |
Basit F, van Oppen LM, Schöckel L, et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells [J]. Cell Death Dis, 2017, 8(3): e2716.
|
[7] |
Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation [J]. Trends Cell Biol, 2016, 26(3): 165-176.
|
[8] |
Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation [J]. Cell Death Dis, 2019, 10(11): 822.
|
[9] |
Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy [J]. Protein Cell, 2021, 12(8): 599-620.
|
[10] |
Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis [J]. Cell, 2018, 172(3): 409-422.
|
[11] |
Firsov AM, Fomich MA, Bekish AV, et al. Threshold protective effect of deuterated polyunsaturated fatty acids on peroxidation of lipid bilayers [J]. FEBS J, 2019, 286(11): 2099-2117.
|
[12] |
Dixon SJ, Winter GE, Musavi LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death [J]. ACS Chem Biol, 2015, 10(7): 1604-1609.
|
[13] |
Yuan H, Li X, Zhang X, et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis [J]. Biochem Biophys Res Commun, 2016, 478(3): 1338-1343.
|
[14] |
Dolma S, Lessnick SL, Hahn WC, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells [J]. Cancer Cell, 2003, 3(3): 285-296.
|
[15] |
Fang D, Maldonado EN. VDAC regulation: a mitochondrial target to stop cell proliferation [J]. Adv Cancer Res, 2018, 138: 41-69.
|
[16] |
Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels [J]. Nature, 2007, 447(7146): 864-868.
|
[17] |
Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells [J]. Chem Biol, 2008, 15(3): 234-245.
|
[18] |
Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4 [J]. Cell, 2014, 156(1-2): 317-331.
|
[19] |
Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis [J]. Nature, 2019, 575(7784): 688-692.
|
[20] |
Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor [J]. Nature, 2019, 575(7784): 693-698.
|
[21] |
Chu J, Liu CX, Song R, et al. Ferrostatin-1 protects HT-22 cells from oxidative toxicity [J]. Neural Regen Res, 2020, 15(3): 528-536.
|
[22] |
Linkermann A, Skouta R, Himmerkus N, et al. Synchronized renal tubular cell death involves ferroptosis [J]. Proc Natl Acad Sci USA, 2014, 111(47): 16836-16841.
|
[23] |
Sheng X, Shan C, Liu J, et al. Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1 [J]. Phys Chem Chem Phys, 2017, 19(20): 13153-13159.
|
[24] |
Yoo SE, Chen L, Na R, et al. Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain [J]. Free Radic Biol Med, 2012, 52(9): 1820-1827.
|
[25] |
Devos D, Moreau C, Devedjian JC, et al. Targeting chelatable iron as a therapeutic modality in Parkinson′s disease [J]. Antioxid Redox Signal, 2014, 21(2): 195-210.
|
[26] |
Li W, Feng G, Gauthier JM, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation [J]. J Clin Invest, 2019, 129(6): 2293-2304.
|
[27] |
Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression [J]. Nature, 2015, 520(7545): 57-62.
|
[28] |
Billesbølle CB, Azumaya CM, Kretsch RC, et al. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms [J]. Nature, 2020, 586(7831): 807-811.
|
[29] |
Norden AG, Lapsley M, Lee PJ, et al. Glomerular protein sieving and implications for renal failure in Fanconi syndrome [J]. Kidney Int, 2001, 60(5): 1885-1892.
|
[30] |
Liu BC, Tang TT, Lv LL, et al. Renal tubule injury: a driving force toward chronic kidney disease [J]. Kidney Int, 2018, 93(3): 568-579.
|
[31] |
van Swelm RPL, Wetzels JFM, Swinkels DW. The multifaceted role of iron in renal health and disease [J]. Nat Rev Nephrol, 2020, 16(2): 77-98.
|
[32] |
王利华,苏晓乐. 急性肾损伤的诊断和早期预警[J/CD]. 中华肾病研究电子杂志,2019, 8(4): 145-149.
|
[33] |
Zager RA, Burkhart K. Myoglobin toxicity in proximal human kidney cells: roles of Fe, Ca2+,H2O2, and terminal mitochondrial electron transport [J]. Kidney Int, 1997, 51(3): 728-738.
|
[34] |
Zarjou A, Bolisetty S, Joseph R, et al. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury [J]. J Clin Invest, 2013, 123(10): 4423-4434.
|
[35] |
Choi N, Whitlock R, Klassen J, et al. Early intraoperative iron-binding proteins are associated with acute kidney injury after cardiac surgery [J]. J Thorac Cardiovasc Surg, 2019, 157(1): 287-297.
|
[36] |
Hu Z, Zhang H, Yi B, et al. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis [J]. Cell Death Dis, 2020, 11(1): 73.
|
[37] |
Martin-Sanchez D, Ruiz-Andres O, Poveda J, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI [J]. J Am Soc Nephrol, 2017, 28(1): 218-229.
|
[38] |
Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice [J]. Nat Cell Biol, 2014, 16(12): 1180-1191.
|
[39] |
Wang Y, Bi R, Quan F, et al. Ferroptosis involves in renal tubular cell death in diabetic nephropathy [J]. Eur J Pharmacol, 2020, 888: 173574.
|
[40] |
Li S, Zheng L, Zhang J, et al. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy [J]. Free Radic Biol Med, 2021, 162: 435-449.
|
[41] |
l′Hoste S, Chargui A, Belfodil R, et al. CFTR mediates apoptotic volume decrease and cell death by controlling glutathione efflux and ROS production in cultured mice proximal tubules [J]. Am J Physiol Renal Physiol, 2010, 298(2): F435-F453.
|
[42] |
Simões F, Ousingsawat J, Wanitchakool P, et al. CFTR supports cell death through ROS-dependent activation of TMEM16F (anoctamin 6) [J]. Pflugers Arch, 2018, 470(2): 305-314.
|
[43] |
Schreiber R, Buchholz B, Kraus A, et al. Lipid peroxidation drives renal cyst growth in vitro through activation of TMEM16A [J]. J Am Soc Nephrol, 2019, 30(2): 228-242.
|
[44] |
Tang S, Xiao X. Ferroptosis and kidney diseases [J]. Int Urol Nephrol, 2020, 52(3): 497-503.
|
[45] |
Ikeda Y, Ozono I, Tajima S, et al. Iron chelation by deferoxamine prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction [J]. PLoS One, 2014, 9(2): e89355.
|
[46] |
Zou Y, Palte MJ, Deik AA, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis [J]. Nat Commun, 2019, 10(1): 1617.
|