切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (06) : 342 -346. doi: 10.3877/cma.j.issn.2095-3216.2021.06.009

综述

人工智能技术在肾脏病中的应用研究进展
张爽1, 刘书馨1,(), 牟向伟2, 姜博文2, 董毳1, 由莲莲1   
  1. 1. 116033 大连市中心医院肾内科、大连市智慧血液净化重点实验室
    2. 116026 大连海事大学航运经济与管理学院
  • 收稿日期:2021-09-29 出版日期:2021-12-28
  • 通信作者: 刘书馨

Research progress on the application of artificial intelligence technology in kidney disease

Shuang Zhang1, Shuxin Liu1,(), Xiangwei Mu2, Bowen Jiang2, Cui Dong1, Lianlian You1   

  1. 1. Department of Nephrology, Dalian Municipal Central Hospital, Dalian Key Laboratory of Intelligent Blood Purification, Dalian 116033
    2. Dalian Maritime University School of Maritime Economics and Management, Dalian 116026; Liaoning Province, China
  • Received:2021-09-29 Published:2021-12-28
  • Corresponding author: Shuxin Liu
引用本文:

张爽, 刘书馨, 牟向伟, 姜博文, 董毳, 由莲莲. 人工智能技术在肾脏病中的应用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(06): 342-346.

Shuang Zhang, Shuxin Liu, Xiangwei Mu, Bowen Jiang, Cui Dong, Lianlian You. Research progress on the application of artificial intelligence technology in kidney disease[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(06): 342-346.

人工智能在医学的许多领域发挥着越来越重要的作用,极大地推动了医疗工作的开展。本综述归纳了人工智能在肾脏疾病领域成功应用的研究,包括疾病监测、风险预测及临床决策支持。同时,对人工智能在肾脏疾病领域的未来发展提出建议和展望,以使其为肾脏疾病的临床实践做出更大的贡献。

Artificial intelligence is playing an increasingly important role in many fields of medicine, which has greatly promoted the development of medical work. This review summarized the research on the successful application of artificial intelligence in the field of kidney disease, including disease monitoring, risk prediction, and clinical decision support. Simultaneously, suggestions and prospects were also put forward for the future development of artificial intelligence in the field of kidney disease, with a view to enabling it to make greater contributions to the clinical practice of kidney disease.

图1 人工智能在肾脏病领域的应用注:CKD:慢性肾脏病;ESA:erythropoiesis-stimulating agent,红细胞生成刺激剂;HD:hemodialysis,血液透析
[1]
Fraser S, Roderick PJ. Kidney disease in the global burden of disease study 2017 [J]. Nat Rev Nephrol, 2019, 15(4): 193-194.
[2]
Yun CW, Lee SH. Potential and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for acute/chronic kidney disease [J]. Int J Mol Sci, 2019, 20(7): 1619.
[3]
GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J]. Lancet, 2020, 395(10225): 709-733.
[4]
Wang F, Preininger A. AI in health: state of the art, challenges, and future directions [J]. Yearb Med Inform, 2019, 28(1): 16-26.
[5]
Goecks J, Jalili V, Heiser LM, et al. How machine learning will transform biomedicine [J]. Cell, 2020, 181(1): 92-101.
[6]
Miller DD, Brown EW. Artificial intelligence in medical practice: the question to the answer [J]. Am J Med, 2018, 131(2): 129-133.
[7]
Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J]. Lancet, 2019, 394(10201): 861-867.
[8]
Sowah RA, Bampoe-Addo AA, Armoo SK, et al. Design and development of diabetes management system using machine learning [J]. Int J Telemed Appl, 2020, 2020: 8870141.
[9]
Bellemo V, Lim G, Rim TH, et al. Artificial intelligence screening for diabetic retinopathy: the real-world emerging application [J]. Curr Diab Rep, 2019, 19(9): 72.
[10]
Goodman S, Reid-Adam J. Immunoglobulin A nephropathy [J]. Pediatr Rev, 2019, 40(8): 439-441.
[11]
Rajasekaran A, Julian BA, Rizk DV. IgA nephropathy: an interesting autoimmune kidney disease [J]. Am J Med Sci, 2021, 361(2): 176-194.
[12]
Geddes CC, Fox JG, Allison ME, et al. An artificial neural network can select patients at high risk of developing progressive IgA nephropathy more accurately than experienced nephrologists [J]. Nephrol Dial Transplant, 1998, 13(1): 67-71.
[13]
Niel O, Boussard C, Bastard P. Artificial intelligence can predict GFR decline during the course of ADPKD [J]. Am J Kidney Dis, 2018, 71(6): 911-912.
[14]
Makino M, Yoshimoto R, Ono M, et al. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning [J]. Sci Rep, 2019, 9(1): 11862.
[15]
Katsuki T, Ono M, Koseki A, et al. Risk prediction of diabetic nephropathy via interpretable feature extraction from EHR using convolutional autoencoder [J]. Stud Health Technol Inform, 2018, 247: 106-110.
[16]
Sabiu G, Podesta MA. Membranous nephropathy: it is time to go back to the future [J]. Nephron, 2021, 145(6): 721-727.
[17]
Ronco P, Debiec H. Pathophysiological advances in membranous nephropathy: time for a shift in patient's care [J]. Lancet, 2015, 385(9981): 1983-1992.
[18]
Tu T, Wei X, Yang Y, et al. Deep learning-based framework for the distinction of membranous nephropathy: a new approach through hyperspectral imagery [J]. BMC Nephrol, 2021, 22(1): 231.
[19]
Chan L, Beers K, Yau AA, et al. Natural language processing of electronic health records is superior to billing codes to identify symptom burden in hemodialysis patients [J]. Kidney Int, 2020, 97(2): 383-392.
[20]
Khavanin Zadeh M, Omrani Z, Najmi N. Prevalence and survival of hemodialysis vascular access in end-stage renal disease (ESRD) patients of Tehran, Iran [J]. Ann Iran Med, 2006, 3(8): 37-40.
[21]
Viecelli AK, Lok CE. Hemodialysis vascular access in the elderly-getting it right [J]. Kidney Int, 2019, 95(1): 38-49.
[22]
Kim DH, Park JI, Lee JP, et al. The effects of vascular access types on the survival and quality of life and depression in the incident hemodialysis patients [J]. Ren Fail, 2020, 42(1): 30-39.
[23]
Gerald B. Fistula first has resulted in an Increase in catheter use [J]. J Vasc Access, 200910(4): 284-285.
[24]
Rezapour M, Khavanin ZM, Sepehri MM. Implementation of predictive data mining techniques for identifying risk factors of early AVF failure in hemodialysis patients [J]. Comput Math Methods Med, 2013, 2013: 830745.
[25]
Ota K, Nishiura Y, Ishihara S, et al. Evaluation of hemodialysis arteriovenous bruit by deep learning [J]. Sensors (Basel), 2020, 20(17): 4852.
[26]
Tsur N, Menashe I, Haviv YS. Risk factors before dialysis predominate as mortality predictors in diabetic maintenance dialysis patients [J]. Sci Rep, 2019, 9(1): 10633.
[27]
Garcia-Montemayor V, Martin-Malo A, Barbieri C, et al. Predicting mortality in hemodialysis patients using machine learning analysis [J]. Clin Kidney J, 2021, 14(5): 1388-1395.
[28]
Radovi N, Prelevi V, Erceg M, et al. Machine learning approach in mortality rate prediction for hemodialysis patients [J]. Comput Methods Biomech Biomed Engin, 2021, Epub ahead of print.
[29]
Sedaghattalab M, Razazan M, Sadeghi H, et al. Effects of nasturtium officinale extract on antioxidant and biochemical parameters in hemodialysis patients: a randomized double-blind clinical trial [J]. Evid Based Complement Alternat Med, 2021, 2021: 1632957.
[30]
Mezzatesta S, Torino C, Meo P, et al. A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis [J]. Comput Methods Programs Biomed, 2019, 177: 9-15.
[31]
Stuckey TD, Gammon RS, Goswami R, et al. Cardiac phase space tomography: a novel method of assessing coronary artery disease utilizing machine learning [J]. PLoS One, 2018, 13(8): e198603.
[32]
Cheng P, Waitman LR, Hu Y, et al. Predicting inpatient acute kidney injury over different time horizons: how early and accurate [J]. AMIA Annu Symp Proc, 2018, 2017: 565-574.
[33]
Ibrahim NE, McCarthy CP, Shrestha S, et al. A clinical, proteomics, and artificial intelligence-driven model to predict acute kidney injury in patients undergoing coronary angiography [J]. Clin Cardiol, 2019, 42(2): 292-298.
[34]
Chiu JS, Chong CF, Lin YF, et al. Applying an artificial neural network to predict total body water in hemodialysis patients [J]. Am J Nephrol, 2005, 25(5): 507-513.
[35]
Guo XY, Zhou W, Shi B, et al. An efficient multiple kernel support vector regression model for assessing dry weight of hemodialysis patients [J]. Curr Bioinform, 2021, 16(2): 284-293.
[36]
Shie AJ, Lo KH, Lin WT, et al. An integrated model using the Taguchi method and artificial neural network to improve artificial kidney solidification parameters [J]. Biomed Eng Online, 2019, 18(1): 78.
[37]
Ohara T, Ikeda H, Sugitani Y, et al. Artificial intelligence supported anemia control system (AISACS) to prevent anemia in maintenance hemodialysis patients [J]. Int J Med Sci, 2021, 18(8): 1831-1839.
[38]
Barbieri C, Molina M, Ponce P, et al. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients [J]. Kidney Int, 2016, 90(2): 422-429.
[39]
Kannan S, Morgan LA, Liang B, et al. Segmentation of glomeruli within trichrome images using deep learning [J]. Kidney Int Rep, 2019, 4(7): 955-962.
[40]
Kolachalama VB, Singh P, Lin CQ, et al. Association of pathological fibrosis with renal survival using deep neural networks [J]. Kidney Int Rep, 2018, 3(2): 464-475.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[4] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[5] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[6] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[7] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[8] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[9] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[10] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[11] 张艳如, 苏晓乐, 王利华. 丝氨酸蛋白酶Corin与肾脏疾病的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 220-223.
[12] 陈显金, 吴芹芹, 何长春, 张庆华. 利用多模态医学数据和机器学习构建脑出血预后预测模型的研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 193-198.
[13] 郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J]. 中华临床医师杂志(电子版), 2023, 17(9): 955-961.
[14] 王俊杰, 尹晓亮, 刘二腾, 陆军, 祁鹏, 胡深, 杨希孟, 陈鲲鹏, 张东, 王大明. 机器学习对预测颈内动脉非急性闭塞患者血管内再通术成功的潜在价值[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 464-470.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要