切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (06) : 342 -346. doi: 10.3877/cma.j.issn.2095-3216.2021.06.009

综述

人工智能技术在肾脏病中的应用研究进展
张爽1, 刘书馨1,(), 牟向伟2, 姜博文2, 董毳1, 由莲莲1   
  1. 1. 116033 大连市中心医院肾内科、大连市智慧血液净化重点实验室
    2. 116026 大连海事大学航运经济与管理学院
  • 收稿日期:2021-09-29 出版日期:2021-12-28
  • 通信作者: 刘书馨

Research progress on the application of artificial intelligence technology in kidney disease

Shuang Zhang1, Shuxin Liu1,(), Xiangwei Mu2, Bowen Jiang2, Cui Dong1, Lianlian You1   

  1. 1. Department of Nephrology, Dalian Municipal Central Hospital, Dalian Key Laboratory of Intelligent Blood Purification, Dalian 116033
    2. Dalian Maritime University School of Maritime Economics and Management, Dalian 116026; Liaoning Province, China
  • Received:2021-09-29 Published:2021-12-28
  • Corresponding author: Shuxin Liu
引用本文:

张爽, 刘书馨, 牟向伟, 姜博文, 董毳, 由莲莲. 人工智能技术在肾脏病中的应用研究进展[J/OL]. 中华肾病研究电子杂志, 2021, 10(06): 342-346.

Shuang Zhang, Shuxin Liu, Xiangwei Mu, Bowen Jiang, Cui Dong, Lianlian You. Research progress on the application of artificial intelligence technology in kidney disease[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(06): 342-346.

人工智能在医学的许多领域发挥着越来越重要的作用,极大地推动了医疗工作的开展。本综述归纳了人工智能在肾脏疾病领域成功应用的研究,包括疾病监测、风险预测及临床决策支持。同时,对人工智能在肾脏疾病领域的未来发展提出建议和展望,以使其为肾脏疾病的临床实践做出更大的贡献。

Artificial intelligence is playing an increasingly important role in many fields of medicine, which has greatly promoted the development of medical work. This review summarized the research on the successful application of artificial intelligence in the field of kidney disease, including disease monitoring, risk prediction, and clinical decision support. Simultaneously, suggestions and prospects were also put forward for the future development of artificial intelligence in the field of kidney disease, with a view to enabling it to make greater contributions to the clinical practice of kidney disease.

图1 人工智能在肾脏病领域的应用注:CKD:慢性肾脏病;ESA:erythropoiesis-stimulating agent,红细胞生成刺激剂;HD:hemodialysis,血液透析
[1]
Fraser S, Roderick PJ. Kidney disease in the global burden of disease study 2017 [J]. Nat Rev Nephrol, 2019, 15(4): 193-194.
[2]
Yun CW, Lee SH. Potential and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for acute/chronic kidney disease [J]. Int J Mol Sci, 2019, 20(7): 1619.
[3]
GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J]. Lancet, 2020, 395(10225): 709-733.
[4]
Wang F, Preininger A. AI in health: state of the art, challenges, and future directions [J]. Yearb Med Inform, 2019, 28(1): 16-26.
[5]
Goecks J, Jalili V, Heiser LM, et al. How machine learning will transform biomedicine [J]. Cell, 2020, 181(1): 92-101.
[6]
Miller DD, Brown EW. Artificial intelligence in medical practice: the question to the answer [J]. Am J Med, 2018, 131(2): 129-133.
[7]
Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J]. Lancet, 2019, 394(10201): 861-867.
[8]
Sowah RA, Bampoe-Addo AA, Armoo SK, et al. Design and development of diabetes management system using machine learning [J]. Int J Telemed Appl, 2020, 2020: 8870141.
[9]
Bellemo V, Lim G, Rim TH, et al. Artificial intelligence screening for diabetic retinopathy: the real-world emerging application [J]. Curr Diab Rep, 2019, 19(9): 72.
[10]
Goodman S, Reid-Adam J. Immunoglobulin A nephropathy [J]. Pediatr Rev, 2019, 40(8): 439-441.
[11]
Rajasekaran A, Julian BA, Rizk DV. IgA nephropathy: an interesting autoimmune kidney disease [J]. Am J Med Sci, 2021, 361(2): 176-194.
[12]
Geddes CC, Fox JG, Allison ME, et al. An artificial neural network can select patients at high risk of developing progressive IgA nephropathy more accurately than experienced nephrologists [J]. Nephrol Dial Transplant, 1998, 13(1): 67-71.
[13]
Niel O, Boussard C, Bastard P. Artificial intelligence can predict GFR decline during the course of ADPKD [J]. Am J Kidney Dis, 2018, 71(6): 911-912.
[14]
Makino M, Yoshimoto R, Ono M, et al. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning [J]. Sci Rep, 2019, 9(1): 11862.
[15]
Katsuki T, Ono M, Koseki A, et al. Risk prediction of diabetic nephropathy via interpretable feature extraction from EHR using convolutional autoencoder [J]. Stud Health Technol Inform, 2018, 247: 106-110.
[16]
Sabiu G, Podesta MA. Membranous nephropathy: it is time to go back to the future [J]. Nephron, 2021, 145(6): 721-727.
[17]
Ronco P, Debiec H. Pathophysiological advances in membranous nephropathy: time for a shift in patient's care [J]. Lancet, 2015, 385(9981): 1983-1992.
[18]
Tu T, Wei X, Yang Y, et al. Deep learning-based framework for the distinction of membranous nephropathy: a new approach through hyperspectral imagery [J]. BMC Nephrol, 2021, 22(1): 231.
[19]
Chan L, Beers K, Yau AA, et al. Natural language processing of electronic health records is superior to billing codes to identify symptom burden in hemodialysis patients [J]. Kidney Int, 2020, 97(2): 383-392.
[20]
Khavanin Zadeh M, Omrani Z, Najmi N. Prevalence and survival of hemodialysis vascular access in end-stage renal disease (ESRD) patients of Tehran, Iran [J]. Ann Iran Med, 2006, 3(8): 37-40.
[21]
Viecelli AK, Lok CE. Hemodialysis vascular access in the elderly-getting it right [J]. Kidney Int, 2019, 95(1): 38-49.
[22]
Kim DH, Park JI, Lee JP, et al. The effects of vascular access types on the survival and quality of life and depression in the incident hemodialysis patients [J]. Ren Fail, 2020, 42(1): 30-39.
[23]
Gerald B. Fistula first has resulted in an Increase in catheter use [J]. J Vasc Access, 200910(4): 284-285.
[24]
Rezapour M, Khavanin ZM, Sepehri MM. Implementation of predictive data mining techniques for identifying risk factors of early AVF failure in hemodialysis patients [J]. Comput Math Methods Med, 2013, 2013: 830745.
[25]
Ota K, Nishiura Y, Ishihara S, et al. Evaluation of hemodialysis arteriovenous bruit by deep learning [J]. Sensors (Basel), 2020, 20(17): 4852.
[26]
Tsur N, Menashe I, Haviv YS. Risk factors before dialysis predominate as mortality predictors in diabetic maintenance dialysis patients [J]. Sci Rep, 2019, 9(1): 10633.
[27]
Garcia-Montemayor V, Martin-Malo A, Barbieri C, et al. Predicting mortality in hemodialysis patients using machine learning analysis [J]. Clin Kidney J, 2021, 14(5): 1388-1395.
[28]
Radovi N, Prelevi V, Erceg M, et al. Machine learning approach in mortality rate prediction for hemodialysis patients [J]. Comput Methods Biomech Biomed Engin, 2021, Epub ahead of print.
[29]
Sedaghattalab M, Razazan M, Sadeghi H, et al. Effects of nasturtium officinale extract on antioxidant and biochemical parameters in hemodialysis patients: a randomized double-blind clinical trial [J]. Evid Based Complement Alternat Med, 2021, 2021: 1632957.
[30]
Mezzatesta S, Torino C, Meo P, et al. A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis [J]. Comput Methods Programs Biomed, 2019, 177: 9-15.
[31]
Stuckey TD, Gammon RS, Goswami R, et al. Cardiac phase space tomography: a novel method of assessing coronary artery disease utilizing machine learning [J]. PLoS One, 2018, 13(8): e198603.
[32]
Cheng P, Waitman LR, Hu Y, et al. Predicting inpatient acute kidney injury over different time horizons: how early and accurate [J]. AMIA Annu Symp Proc, 2018, 2017: 565-574.
[33]
Ibrahim NE, McCarthy CP, Shrestha S, et al. A clinical, proteomics, and artificial intelligence-driven model to predict acute kidney injury in patients undergoing coronary angiography [J]. Clin Cardiol, 2019, 42(2): 292-298.
[34]
Chiu JS, Chong CF, Lin YF, et al. Applying an artificial neural network to predict total body water in hemodialysis patients [J]. Am J Nephrol, 2005, 25(5): 507-513.
[35]
Guo XY, Zhou W, Shi B, et al. An efficient multiple kernel support vector regression model for assessing dry weight of hemodialysis patients [J]. Curr Bioinform, 2021, 16(2): 284-293.
[36]
Shie AJ, Lo KH, Lin WT, et al. An integrated model using the Taguchi method and artificial neural network to improve artificial kidney solidification parameters [J]. Biomed Eng Online, 2019, 18(1): 78.
[37]
Ohara T, Ikeda H, Sugitani Y, et al. Artificial intelligence supported anemia control system (AISACS) to prevent anemia in maintenance hemodialysis patients [J]. Int J Med Sci, 2021, 18(8): 1831-1839.
[38]
Barbieri C, Molina M, Ponce P, et al. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients [J]. Kidney Int, 2016, 90(2): 422-429.
[39]
Kannan S, Morgan LA, Liang B, et al. Segmentation of glomeruli within trichrome images using deep learning [J]. Kidney Int Rep, 2019, 4(7): 955-962.
[40]
Kolachalama VB, Singh P, Lin CQ, et al. Association of pathological fibrosis with renal survival using deep neural networks [J]. Kidney Int Rep, 2018, 3(2): 464-475.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[5] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[6] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[7] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[8] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[9] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[10] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[11] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[12] 崔文鹏. 腹膜透析在老年终末期肾脏疾病患者中的应用[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 300-300.
[13] 潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 张玮玮, 霍晓川. 人工智能时代医学生批判性思维培养的重要性[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 357-359.
阅读次数
全文


摘要