[1] |
Kitada M, Ogura Y, Suzuki T, et al. A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity [J]. Diabetologia, 2016, 59(6): 1307-1317.
|
[2] |
Vallon V, Rose M, Gerasimova M, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus [J]. Am J Physiol Renal Physiol, 2013, 304(2): F156-F167.
|
[3] |
Yamahara K, Kume S, Koya D, et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions [J]. J Am Soc Nephrol, 2013, 24(11): 1769-1781.
|
[4] |
Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy [J]. Mol Biol Cell, 2009, 20(7): 1981-1991.
|
[5] |
Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery [J]. Mol Biol Cell, 2009, 20(7): 1992-2003.
|
[6] |
Martina JA, Chen Y, Gucek M, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB [J]. Autophagy, 2012, 8(6): 903-914.
|
[7] |
Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 [J]. Nat Cell Biol, 2011, 13(2): 132-141.
|
[8] |
Fantus D, Rogers NM, Grahammer F, et al. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation [J]. Nat Rev Nephrol, 2016, 12(10): 587-609.
|
[9] |
Stridh S, Palm F, Takahashi T, et al. Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan [J]. Ups J Med Sci, 2015, 120(4): 233-240.
|
[10] |
Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis [J]. Nat Rev Mol Cell Biol, 2018, 19(2): 121-135.
|
[11] |
Mori H, Inoki K, Masutani K, et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential [J]. Biochem Biophys Res Commun, 2009, 384(4): 471-475.
|
[12] |
Ding DF, You N, Wu XM, et al. Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK [J]. Am J Nephrol, 2010, 31(4): 363-374.
|
[13] |
Li A, Yi B, Han H, et al. Vitamin D-VDR (vitamin D receptor) regulates defective autophagy in renal tubular epithelial cell in streptozotocin-induced diabetic mice via the AMPK pathway [J]. Autophagy, 2021, Epub ahead of print.
|
[14] |
Van Nostrand JL, Hellberg K, Luo EC, et al. AMPK regulation of Raptor and TSC2 mediate metformin effects on transcriptional control of anabolism and inflammation [J]. Genes Dev, 2020, 34(19-20): 1330-1344.
|
[15] |
Gowd V, Kang Q, Wang Q, et al. Resveratrol: evidence for its nephroprotective effect in diabetic nephropathy [J]. Adv Nutr, 2020, 11(6): 1555-1568.
|
[16] |
Huang R, Xu Y, Wan W, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation [J]. Mol Cell, 2015, 57(3): 456-466.
|
[17] |
Hong Q, Zhang L, Das B, et al. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury [J]. Kidney Int, 2018, 93(6): 1330-1343.
|
[18] |
Woo CY, Baek JY, Kim AR, et al. Inhibition of ceramide accumulation in podocytes by myriocin prevents diabetic nephropathy [J]. Diabetes Metab J, 2020, 44(4): 581-591.
|
[19] |
Yadav A, Vallabu S, Arora S, et al. ANG II promotes autophagy in podocytes [J]. Am J Physiol Cell Physiol, 2010, 299(2): C488-C496.
|
[20] |
Gao Q. Oxidative stress and autophagy [J]. Adv Exp Med Biol, 2019, 1206: 179-198.
|
[21] |
Pandey VK, Mathur A, Kakkar P. Emerging role of unfolded protein response (UPR) mediated proteotoxic apoptosis in diabetes [J]. Life Sci, 2019, 216: 246-258.
|
[22] |
Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases [J]. Nat Rev Nephrol, 2017, 13(11): 681-696.
|
[23] |
Xu X, Chen B, Huang Q, et al. The effects of puerarin on autophagy through regulating of the PERK/eIF2α/ATF4 signaling pathway influences renal function in diabetic nephropathy [J]. Diabetes Metab Syndr Obes, 2020, 13: 2583-2592.
|
[24] |
Liang JR, Lingeman E, Luong T, et al. A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation [J]. Cell, 2020, 180(6): 1160-1177.
|
[25] |
Xu G, Wang S, Han S, et al. Plant Bax inhibitor-1 interacts with ATG6 to regulate autophagy and programmed cell death [J]. Autophagy, 2017, 13(7): 1161-1175.
|
[26] |
Lu N, Li X, Tan R, et al. HIF-1α/Beclin1-mediated autophagy is involved in neuroprotection induced by hypoxic preconditioning [J]. J Mol Neurosci, 2018, 66(2): 238-250.
|
[27] |
Li Q, Ni Y, Zhang L, et al. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation [J]. Signal Transduct Target Ther, 2021, 6(1): 76.
|
[28] |
Yang R, Zhu Y, Wang Y, et al. HIF-1α/PDK4/autophagy pathway protects against advanced glycation end-products induced vascular smooth muscle cell calcification [J]. Biochem Biophys Res Commun, 2019, 517(3): 470-476.
|
[29] |
Ma L, Fu R, Duan Z, et al. Sirt1 is essential for resveratrol enhancement of hypoxia-induced autophagy in the type 2 diabetic nephropathy rat [J]. Pathol Res Pract, 2016, 212(4): 310-318.
|
[30] |
Mehrpour M, Esclatine A, Beau I, et al. Overview of macroautophagy regulation in mammalian cells [J]. Cell Res, 2010, 20(7): 748-762.
|
[31] |
Wang X, Gao Y, Tian N, et al. Astragaloside IV inhibits glucose-induced epithelial-mesenchymal transition of podocytes through autophagy enhancement via the SIRT-NF-κB p65 axis [J]. Sci Rep, 2019, 9(1): 323.
|
[32] |
Guo H, Wang Y, Zhang X, et al. Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKα-regulated autophagy induction in streptozotocin-induced diabetic nephropathy [J]. Sci Rep, 2017, 7(1): 6852.
|
[33] |
Zhang P, Fang J, Zhang J, et al. Curcumin inhibited podocyte cell apoptosis and accelerated cell autophagy in diabetic nephropathy via regulating Beclin1/UVRAG/Bcl2 [J]. Diabetes Metab Syndr Obes, 2020, 13: 641-652.
|
[34] |
Wei Y, Gao J, Qin L, et al. Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy [J]. Exp Ther Med, 2017, 14(6): 6052-6058.
|
[35] |
Li XY, Wang SS, Han Z, et al. Triptolide restores autophagy to alleviate diabetic renal fibrosis through the miR-141-3p/PTEN/Akt/mTOR pathway [J]. Mol Ther Nucleic Acids, 2017, 9: 48-56.
|
[36] |
Tao M, Zheng D, Liang X, et al. Tripterygium glycoside suppresses epithelial to mesenchymal transition of diabetic kidney disease podocytes by targeting autophagy through the mTOR/Twist1 pathway [J]. Mol Med Rep, 2021, 24(2): 592.
|
[37] |
Zhan H, Jin J, Liang S, et al. Tripterygium glycoside protects diabetic kidney disease mouse serum-induced podocyte injury by upregulating autophagy and downregulating β-arrestin-1 [J]. Histol Histopathol, 2019, 34(8): 943-952.
|
[38] |
Nie Y, Fu C, Zhang H, et al. Celastrol slows the progression of early diabetic nephropathy in rats via the PI3K/AKT pathway [J]. BMC Complement Med Ther, 2020, 20(1): 321.
|
[39] |
Li X, Zhu Q, Zheng R, et al. Puerarin attenuates diabetic nephropathy by promoting autophagy in podocytes [J]. Front Physiol, 2020, 11: 73.
|
[40] |
Xuan C, Xi YM, Zhang YD, et al. Yiqi Jiedu Huayu decoction alleviates renal injury in rats with diabetic nephropathy by promoting autophagy [J]. Front Pharmacol, 2021, 12: 624404.
|
[41] |
Dai H, Liu F, Qiu X, et al. Alleviation by Mahuang Fuzi and Shenzhuo decoction in high glucose-induced podocyte injury by inhibiting the activation of Wnt/β-catenin signaling pathway, resulting in activation of podocyte autophagy [J]. Evid Based Complement Alternat Med, 2020, 2020: 7809427.
|
[42] |
Han J, Zhang Y, Shi X, et al. Tongluo Digui decoction treats renal injury in diabetic rats by promoting autophagy of podocytes [J]. J Tradit Chin Med, 2021, 41(1): 125-132.
|
[43] |
Liu Y, Liu W, Zhang Z, et al. Yishen capsule promotes podocyte autophagy through regulating SIRT1/NF-κB signaling pathway to improve diabetic nephropathy [J]. Ren Fail, 2021, 43(1): 128-140.
|
[44] |
Chen Y, Zheng YF, Lin XH, et al. Dendrobium mixture attenuates renal damage in rats with diabetic nephropathy by inhibiting the PI3K/Akt/mTOR pathway [J]. Mol Med Rep, 2021, 24(2): 590.
|