切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2023, Vol. 12 ›› Issue (01) : 32 -38. doi: 10.3877/cma.j.issn.2095-3216.2023.01.006

综述

急性肾损伤早期生物标志物的研究进展
任涛涛1, 乔晞1,()   
  1. 1. 030001 太原,山西医科大学第二医院肾内科、山西省肾脏病研究所、山西医科大学肾病研究所
  • 收稿日期:2022-06-23 出版日期:2023-02-28
  • 通信作者: 乔晞
  • 基金资助:
    山西省回国留学人员科研资助项目(2020-186); 山西省留学回国人员科技活动择优资助项目(2017-29)

Progress of research on early biomarkers of acute kidney injury

Taotao Ren1, Xi Qiao1,()   

  1. 1. Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Provincial Institute for Kidney Disease, Kidney Disease Institute of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2022-06-23 Published:2023-02-28
  • Corresponding author: Xi Qiao
引用本文:

任涛涛, 乔晞. 急性肾损伤早期生物标志物的研究进展[J]. 中华肾病研究电子杂志, 2023, 12(01): 32-38.

Taotao Ren, Xi Qiao. Progress of research on early biomarkers of acute kidney injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(01): 32-38.

急性肾损伤(AKI)是危重患者常见的并发症之一,发病率和死亡率居高不下,严重影响患者预后,早期诊断及干预尤为关键。目前诊断AKI所依赖的血清肌酐和尿量指标有一定局限性,寻找有效的早期生物标志物已经成为AKI研究的当务之急。近年来不断有新的研究成果问世,本文综述了有关AKI早期诊断生物标志物的最新研究进展。

Acute kidney injury (AKI) is one of the common complications in critically ill patients. The incidence and mortality of AKI are high, which seriously affects the prognosis of patients. Early diagnosis and intervention are particularly important. At present, the indexes of serum creatinine and urine volume on which the diagnosis of AKI depends have certain limitations, and finding effective early biomarkers has become the urgent task of AKI research. In recent years, new research results have been published continually. This article reviewed the latest progress of research on early biomarkers of AKI diagnosis.

表1 急性肾损伤生物标志物
生物标志物 来源及生理作用 临床应用
NGAL 来源于亨氏袢及远端小管;与免疫应答、细胞分化凋亡、氧化应激等相关的蛋白 血或尿NGAL对危重患者(如:脓毒症或心脏大手术后)AKI预测表现良好,多用于ICU或急诊室
TIMP-2、IGFBP7 在肾小管上皮细胞中表达的细胞周期停滞蛋白 尿TIMP-2、IGFBP7对短暂性AKI诊断特异性及灵敏度较高,不受合并症影响,试剂盒Nephrocheck已在美国及欧洲上市
KIM-1 属于免疫球蛋白基因超家族,主要表达于近曲小管上皮细胞 尿KIM-1对预测肾毒性AKI表现良好,在美国用于药物开发研究中肾毒性的临床前检测
L-FABP 存在于近端小管的溶酶体中;肾损伤时促进过氧化产物排出,避免肾损伤 尿L-FABP预测缺血性和肾毒性AKI表现良好,在日本已被作为AKI早期诊断的标志物
IL-18 抗原呈递细胞产生的促炎症细胞因子;肾损伤时,上调NF-κB通路,诱导其他炎症介质释放,促进炎症细胞浸润,引发肾损伤 尿IL-18对AKI预测能力一般,但抗IL-18治疗是未来重要的AKI治疗方案
miRNA 基因表达转录后的调节者,诱导mRNA降解或阻止mRNA翻译成蛋白质;对AKI有重要的调控作用 血或尿miRNA均为AKI早期诊断标志物,靶向miRNA药物治疗是精准医疗重要发展方向
Klotho 来源于远端小管及近曲小管等;有抗氧化应激、抗衰老、抗凋亡以及上调自噬等多种生物学作用 血或尿Klotho均为AKI的诊断标志物,Klotho蛋白可加速肾脏恢复,减少肾纤维化,延缓AKI进展为CKD
[1]
Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury [J]. Nat Rev Nephrol, 2018, 14(10): 607-625.
[2]
Kellum JA, Romagnani P, Ashuntantang G, et al. Acute kidney injury [J]. Nat Rev Dis Primers, 2021, 7(1): 52.
[3]
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury [J]. Nephron Clin Pract, 2012, 120(4): c179-c184.
[4]
Schrezenmeier EV, Barasch J, Budde K, et al. Biomarkers in acute kidney injury-pathophysiological basis and clinical performance [J]. Acta Physiol (Oxf), 2017, 219(3): 554-572.
[5]
Zhang A, Cai Y, Wang P-F, et al. Diagnosis and prognosis of neutrophil gelatinase-associated lipocalin for acute kidney injury with sepsis: a systematic review and meta-analysis [J]. Crit Care, 2016, 20(1): 41.
[6]
Jahaj E, Vassiliou AG, Pratikaki M, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) could provide better accuracy than creatinine in predicting acute kidney injury development in critically ill patients [J]. J Clin Med, 2021, 10(22): 5379.
[7]
Yi A, Lee C-H, Yun Y-M, et al. Effectiveness of plasma and urine neutrophil gelatinase-associated lipocalin for predicting acute kidney injury in high-risk patients [J]. Ann Lab Med, 2021, 41(1): 60-67.
[8]
Huelin P, Solà E, Elia C, et al. Neutrophil gelatinase-associated lipocalin for assessment of acute kidney injury in cirrhosis: a prospective study [J]. Hepatology, 2019, 70(1): 319-333.
[9]
Ye Z, Liu H, Zhao B, et al. Correlation and diagnostic value of serum Cys-C, RBP4, and NGAL with the condition of patients with traumatic acute kidney injury [J]. Evid Based Complement Alternat Med, 2021, 2021: 4990941.
[10]
Andrade L, Rodrigues CE, Gomes SA, et al. Acute kidney injury as a condition of renal senescence [J]. Cell Transplant, 2018, 27(5): 739-753.
[11]
Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury [J]. Crit Care, 2013, 17(1): R25.
[12]
Bihorac A, Chawla LS, Shaw AD, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication [J]. Am J Respir Crit Care Med, 2014, 189(8): 932-939.
[13]
Heung M, Ortega LM, Chawla LS, et al. Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury [J]. Nephrol Dial Transplant, 2016, 31(10): 1633-1640.
[14]
Fiorentino M, Xu Z, Smith A, et al. Serial measurement of cell-cycle arrest biomarkers [TIMP-2]·[IGFBP7]and risk for progression to death, dialysis, or severe acute kidney injury in patients with septic shock [J]. Am J Respir Crit Care Med, 2020, 202(9): 1262-1270.
[15]
Jia H-M, Huang L-F, Zheng Y, et al. Prognostic value of cell cycle arrest biomarkers in patients at high risk for acute kidney injury: a systematic review and meta-analysis [J]. Nephrology, 2017, 22(11): 831-837.
[16]
Johnson ACM, Zager RA. Mechanisms underlying increased TIMP2 and IGFBP7 urinary excretion in experimental AKI [J]. J Am Soc Nephrol, 2018, 29(8): 2157-2167.
[17]
Daubin D, Cristol JP, Dupuy AM, et al. Urinary biomarkers IGFBP7 and TIMP-2 for the diagnostic assessment of transient and persistent acute kidney injury in critically ill patients [J]. PLoS One, 2017, 12(1): e0169674.
[18]
Titeca-Beauport D, Daubin D, Van Vong L, et al. Urine cell cycle arrest biomarkers distinguish poorly between transient and persistent AKI in early septic shock: a prospective, multicenter study [J]. Crit Care, 2020, 24(1): 280.
[19]
Karmakova ТАSergeeva NS, Kanukoev КY, et al. Kidney injury molecule 1 (KIM-1): a multifunctional glycoprotein and biological marker [J]. Sovrem Tekhnologii Med, 2021, 13(3): 64-78.
[20]
Zhou Y, Vaidya VS, Brown RP, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium [J]. Toxicol Sci, 2008, 101(1): 159-170.
[21]
Shinke H, Masuda S, Togashi Y, et al. Urinary kidney injury molecule-1 and monocyte chemotactic protein-1 are noninvasive biomarkers of cisplatin-induced nephrotoxicity in lung cancer patients [J]. Cancer Chemother Pharmacol, 2015, 76(5): 989-996.
[22]
Geng J, Qiu Y, Qin Z, et al. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis [J]. J Transl Med, 2021, 19(1): 105.
[23]
Ganda IJ, Kasri Y, Susanti M, et al. Kidney injury molecule type-1, interleukin-18, and insulin-like growth factor binding protein 7 levels in urine to predict acute kidney injury in pediatric sepsis [J]. Front Pediatr, 2022, 10: 1024713.
[24]
Xie Y, Wang Q, Wang C, et al. High urinary excretion of kidney injury molecule-1 predicts adverse outcomes in acute kidney injury: a case control study [J]. Crit Care, 2016, 20(1): 286.
[25]
Kwon T-J, Jang E, Lee D-S, et al. Development of a noninvasive KIM-1-based live-imaging technique in the context of a drug-induced kidney-injury mouse model [J]. ACS Appl Bio Mater, 2021, 4(2): 1508-1514.
[26]
Yanishi M, Kinoshita H. Urinary L-type fatty acid-binding protein is a predictor of cisplatin-induced acute kidney injury [J]. BMC Nephrol, 2022, 23(1): 125.
[27]
Lee TH, Lee CC, Chen JJ, et al. Assessment of cardiopulmonary bypass duration improves novel biomarker detection for predicting postoperative acute kidney injury after cardiovascular surgery [J]. J Clin Med, 2021, 10(13): 2741.
[28]
Naruse H, Ishii J, Takahashi H, et al. Predicting acute kidney injury using urinary liver-type fatty-acid binding protein and serum N-terminal pro-B-type natriuretic peptide levels in patients treated at medical cardiac intensive care units [J]. Crit Care, 2018, 22(1): 197.
[29]
Naruse H, Ishii J, Takahashi H, et al. Urinary liver-type fatty-acid-binding protein predicts long-term adverse outcomes in medical cardiac intensive care units [J]. J Clin Med, 2020, 9(2): 482.
[30]
Torigoe K, Muta K, Tsuji K, et al. Urinary liver-type fatty acid-binding protein predicts residual renal function decline in patients on peritoneal dialysis [J]. Med Sci Monit, 2020, 26: e928236.
[31]
Thi TND, Gia BN, Thi HLL, et al. Evaluation of urinary L-FABP as an early marker for diabetic nephropathy in type 2 diabetic patients [J]. J Med Biochem, 2020, 39(2): 224-230.
[32]
Juanola A, Graupera I, Elia C, et al. Urinary L-FABP is a promising prognostic biomarker of ACLF and mortality in patients with decompensated cirrhosis [J]. J Hepatol, 2022, 76(1): 107-114.
[33]
Beker BM, Corleto MG, Fieiras C, et al. Novel acute kidney injury biomarkers: their characteristics, utility and concerns [J]. Int Urol Nephrol, 2018, 50(4): 705-713.
[34]
Lin X, Yuan J, Zhao Y, et al. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis [J]. J Nephrol, 2015, 28(1): 7-16.
[35]
Liu Y, Guo W, Zhang J, et al. Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis [J]. Am J Kidney Dis, 2013, 62(6): 1058-1067.
[36]
Nisula S, Yang R, Poukkanen M, et al. Predictive value of urine interleukin-18 in the evolution and outcome of acute kidney injury in critically ill adult patients [J]. Br J Anaesth, 2015, 114(3): 460-468.
[37]
Gonul Y, Kazand S, Kocak A, et al. Interleukin-18 binding protein pretreatment attenuates kidney injury induced by hepatic ischemia reperfusion [J]. Am J Med Sci, 2016, 352(2): 200-207.
[38]
Wu YL, Li HF, Chen HH, et al. MicroRNAs as biomarkers and therapeutic targets in inflammation- and ischemia-reperfusion-related acute renal injury [J]. Int J Mol Sci, 2020, 21(18): 6738.
[39]
Wei Q, Bhatt K, He HZ, et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury [J]. J Am Soc Nephrol, 2010, 21(5): 756-761.
[40]
Guo C, Dong G, Liang X, et al. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications [J]. Nat Rev Nephrol, 2019, 15(4): 220-239.
[41]
Liu Z, Yang D, Gao J, et al. Discovery and validation of miR-452 as an effective biomarker for acute kidney injury in sepsis [J]. Theranostics, 2020, 10(26): 11963-11975.
[42]
Aomatsu A, Kaneko S, Yanai K, et al. MicroRNA expression profiling in acute kidney injury [J]. Transl Res, 2022, 244: 1-31.
[43]
Wilflingseder J, Jelencsics K, Bergmeister H, et al. MiR-182-5p inhibition ameliorates ischemic acute kidney injury [J]. Am J Pathol, 2017, 187(1): 70-79.
[44]
Cao JY, Wang B, Tang TT, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury [J]. Theranostics, 2021, 11(11): 5248-5266.
[45]
Li X, Liao J, Su X, et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal which targets [J]. Theranostics, 2020, 10(21): 9561-9578.
[46]
Neyra JA, Hu MC, Moe OW. Klotho in clinical nephrology: diagnostic and therapeutic implications [J]. Clin J Am Soc Nephrol, 2020, 16(1): 162-176.
[47]
Neyra JA, Hu MC, Moe OW. Fibroblast growth factor 23 and αklotho in acute kidney injury: current status in diagnostic and therapeutic applications [J]. Nephron, 2020, 144(12): 665-672.
[48]
Hu MC, Shi M, Zhang J, et al. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective [J]. Kidney Int, 2010, 78(12): 1240-1251.
[49]
王顺,杨磊,刘健,等. 血清Klotho蛋白监测对急性肾损伤早期诊断及预后评估的价值 [J]. 中华肾脏病杂志2018, 34(2): 94-98.
[50]
Qian Y, Che L, Yan Y, et al. Urine klotho is a potential early biomarker for acute kidney injury and associated with poor renal outcome after cardiac surgery [J]. BMC Nephrol, 2019, 20(1): 268.
[51]
Shi M, Flores B, Gillings N, et al. αKlotho mitigates progression of AKI to CKD through activation of autophagy [J]. J Am Soc Nephrol, 2016, 27(8): 2331-2345.
[52]
Christov M, Neyra JA, Gupta S, et al. Fibroblast growth factor 23 and klotho in AKI [J]. Semin Nephrol, 2019, 39(1): 57-75.
[53]
Zhu X, Li S, Lin Q, et al. αKlotho protein has therapeutic activity in contrast-induced acute kidney injury by limiting NLRP3 inflammasome-mediated pyroptosis and promoting autophagy [J]. Pharmacol Res, 2021, 167: 105531.
[54]
Ostermann M, Zarbock A, Goldstein S, et al. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative consensus conference: a consensus statement [J]. JAMA Netw Open, 2020, 3(10): e2019209.
[1] 高建松, 陈晓晓, 冯婷, 包剑锋, 魏淑芳, 潘林. 基于超声瞬时弹性成像的多参数决策树模型评估慢性乙型肝炎患者肝纤维化等级[J]. 中华医学超声杂志(电子版), 2023, 20(09): 923-929.
[2] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[3] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[4] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[5] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[6] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[7] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[8] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[9] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[10] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[11] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[12] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[13] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[14] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[15] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
阅读次数
全文


摘要