[1] |
Levey AS, Coresh J. Chronic kidney disease [J]. Lancet, 2012, 379(9811): 165-180.
|
[2] |
Levey AS, de Jong PE, Coresh J, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report [J]. Kidney Int, 2011, 80(1): 17-28.
|
[3] |
Pusceddu I, Dieplinger B, Mueller T. ST2 and the ST2/IL-33 signalling pathway-biochemistry and pathophysiology in animal models and humans [J]. Clin Chim Acta, 2019, 495: 493-500.
|
[4] |
Villacorta H, Maisel AS. Soluble ST2 testing: a promising biomarker in the management of heart failure [J]. Arq Bras Cardiol, 2016, 106(2): 145-152.
|
[5] |
Homsak E, Ekart R. Hemodiafiltration affects NT-proBNP but not ST2 serum concentration in end-stage renal disease patients [J]. Clin Biochem, 2016, 49(15): 1159-1163.
|
[6] |
Homsak E, Ekart R. ST2 as a novel prognostic marker in end-stage renal disease patients on hemodiafiltration [J]. Clin Chim Acta, 2018, 477: 105-112.
|
[7] |
De Berardinis B, Gaggin HK, Magrini L, et al. Comparison between admission natriuretic peptides, NGAL and sST2 testing for the prediction of worsening renal function in patients with acutely decompensated heart failure [J]. Clin Chem Lab Med, 2015, 53(4): 613-621.
|
[8] |
Tominaga S, Inazawa J, Tsuji S. Assignment of the human ST2 gene to chromosome 2 at q11.2 [J]. Hum Genet, 1996, 97(5): 561-563.
|
[9] |
Homsak E, Gruson D. Soluble ST2: a complex and diverse role in several diseases [J]. Clin Chim Acta, 2020, 507: 75-87.
|
[10] |
Chen WY, Li LC, Yang JL. Emerging roles of IL-33/ST2 axis in renal diseases [J]. Int J Mol Sci, 2017, 18(4): 783.
|
[11] |
Yang F, Zhu P, Duan L, et al. IL-33 and kidney disease [J]. Mol Med Rep, 2016, 13(1): 3-8.
|
[12] |
Zhang J, Ramadan AM, Griesenauer B, et al. ST2 blockade reduces sST2-producing T cells while maintaining protective mST2-expressing T cells during graft-versus-host disease [J]. Sci Transl Med, 2015, 7(308): 308ra160.
|
[13] |
Molofsky AB, Savage AK, Locksley RM. Interleukin-33 in tissue homeostasis, injury, and inflammation [J]. Immunity, 2015, 42(6): 1005-1019.
|
[14] |
Vianello E, Dozio E, Tacchini L, et al. ST2/IL-33 signaling in cardiac fibrosis [J]. Int J Biochem Cell Biol, 2019, 116: 105619.
|
[15] |
Pfeffer PE, Chen YH, Woszczek G, et al. Vitamin D enhances production of soluble ST2, inhibiting the action of IL-33 [J]. J Allergy Clin Immunol, 2015, 135(3): 824-827.
|
[16] |
Torres VE. Treatment strategies and clinical trial design in ADPKD [J]. Adv Chronic Kidney Dis, 2010, 17(2): 190-204.
|
[17] |
Bao YS, Na SP, Zhang P, et al. Characterization of interleukin-33 and soluble ST2 in serum and their association with disease severity in patients with chronic kidney disease [J]. J Clin Immunol, 2012, 32(3): 587-594.
|
[18] |
Sinkovic A, Masnik K, Mihevc M. Predictors of acute kidney injury (AKI) in high-risk ST-elevation myocardial infarction (STEMI) patients: a single-center retrospective observational study [J]. Bosn J Basic Med Sci, 2019, 19(1): 101-108.
|
[19] |
Vyshnevska I, Kopytsya M, Hilоva Y, et al. Biomarker sST2 as an early predictor of acute renal injury in patients with ST-segment elevation acute myocardial infarction [J]. Georgian Med News, 2020, 302: 53-58.
|
[20] |
Kopytsya M, Hilova Y, Vyshnevska I, et al. Biomarker ST2 as a new predictor of acute kidney injury in patients with acute ST-segment elevation myocardial infarction [J]. Georgian Med News, 2018, 282: 61-65.
|
[21] |
Tung YC, Chang CH, Chen YC, et al. Combined biomarker analysis for risk of acute kidney injury in patients with ST-segment elevation myocardial infarction [J]. PLoS One, 2015, 10(4): e0125282.
|
[22] |
Ferhat M, Robin A, Giraud S, et al. Endogenous IL-33 contributes to kidney ischemia-reperfusion injury as an alarmin [J]. J Am Soc Nephrol, 2018, 29(4): 1272-1288.
|
[23] |
Jin Y, Kong D, Liu C, et al. Role of IL-33 in transplant biology [J]. Eur Cytokine Netw, 2019, 30(2): 39-42.
|
[24] |
Liang H, Xu F, Wen XJ, et al. Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion [J]. Eur J Pharmacol, 2017, 812: 18-27.
|
[25] |
Griesenauer B, Paczesny S. The ST2/IL-33 axis in immune cells during inflammatory diseases [J]. Front Immunol, 2017, 8: 475.
|
[26] |
Zhang Z, Liu X, Wang H, et al. Increased soluble ST2 and IL-4 serum levels are associated with disease severity in patients with membranous nephropathy [J]. Mol Med Rep, 2018, 17(2): 2778-2786.
|
[27] |
Kuroki A, Iyoda M, Shibata T, et al. Th2 cytokines increase and stimulate B cells to produce IgG4 in idiopathic membranous nephropathy [J]. Kidney Int, 2005, 68(1): 302-310.
|
[28] |
Prunotto M, Carnevali ML, Candiano G, et al. Autoimmunity in membranous nephropathy targets aldose reductase and SOD2 [J]. J Am Soc Nephrol, 2010, 21(3): 507-519.
|
[29] |
Miller AM, Purves D, McConnachie A, et al. Soluble ST2 associates with diabetes but not established cardiovascular risk factors: a new inflammatory pathway of relevance to diabetes? [J]. PLoS One, 2012, 7(10): e47830.
|
[30] |
Samuelsson M, Dereke J, Svensson MK, et al. Soluble plasma proteins ST2 and CD163 as early biomarkers of nephropathy in Swedish patients with diabetes, 15-34 years of age: a prospective cohort study [J]. Diabetol Metab Syndr, 2017, 9: 41.
|
[31] |
Elsherbiny NM, Said E, Atef H, et al. Renoprotective effect of calycosin in high fat diet-fed/STZ injected rats: effect on IL-33/ST2 signaling, oxidative stress and fibrosis suppression [J]. Chem Biol Interact, 2020, 315: 108897.
|
[32] |
Bapat SP, Myoung Suh J, Fang S, et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistanc [J]. Nature, 2015, 528(7580): 137-141.
|
[33] |
Mok MY, Huang FP, Ip WK, et al. Serum levels of IL-33 and soluble ST2 and their association with disease activity in systemic lupus erythematosus [J]. Rheumatology (Oxford), 2010, 49(3): 520-527.
|
[34] |
Italiani P, Manca ML, Angelotti F, et al. IL-1 family cytokines and soluble receptors in systemic lupus erythematosus [J]. Arthritis Res Ther, 2018, 20(1): 27.
|
[35] |
Choi YB, Lee MJ, Park JT, et al. Prognostic value of soluble ST2 and soluble LR11 on mortality and cardiovascular events in peritoneal dialysis patients [J]. BMC Nephrol, 2020, 21(1): 228.
|
[36] |
Tuegel C, Katz R, Alam M, et al. GDF-15, galectin 3, soluble ST2, and risk of mortality and cardiovascular events in CKD [J]. Am J Kidney Dis, 2018, 72(4): 519-528.
|
[37] |
Alam ML, Katz R, Bellovich KA, et al. Soluble ST2 and galectin-3 and progression of CKD [J]. Kidney Int Rep, 2018, 4(1): 103-111.
|
[38] |
Bansal N, Zelnick L, Shlipak MG, et al. Cardiac and stress biomarkers and chronic kidney disease progression: the CRIC study [J]. Clin Chem, 2019, 65(11): 1448-1457.
|
[39] |
刘慧敏,李长红. 肾性继发性甲状旁腺功能亢进的内科治疗研究进展[J]. 广东化工,2020,47(23): 71-72.
|
[40] |
Bao YS, Na SP, Zhang P, et al. Characterization of interleukin-33 and soluble ST2 in serum and their association with disease severity in patients with chronic kidney disease [J]. J Clin Immunol, 2012, 32(3): 587-594.
|