切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (05) : 292 -295. doi: 10.3877/cma.j.issn.2095-3216.2021.05.011

综述

可溶性ST2蛋白在肾脏疾病中的作用研究进展
张亚伟1, 王兴智1,()   
  1. 1. 150001 哈尔滨医科大学附属第一医院肾内科
  • 收稿日期:2021-04-29 出版日期:2021-10-20
  • 通信作者: 王兴智

Progress of research on the role of soluble ST2 protein in renal diseases

Yawei Zhang1, Xingzhi Wang1,()   

  1. 1. Department of Nephrology, First Hospital Affiliated to Harbin Medical University, Harbin 150001, Heilongjiang Province, China
  • Received:2021-04-29 Published:2021-10-20
  • Corresponding author: Xingzhi Wang
引用本文:

张亚伟, 王兴智. 可溶性ST2蛋白在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 292-295.

Yawei Zhang, Xingzhi Wang. Progress of research on the role of soluble ST2 protein in renal diseases[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(05): 292-295.

慢性肾脏病在我国成年人中的患病率高达10.8%,其并发症大多预后不良,已经成为我国公共卫生健康的重大问题。因此,寻找早期识别肾脏损伤的特异性生物标志物是急需解决的问题。致癌性抑制基因2蛋白(ST2)是IL-1受体家族成员之一,在多种疾病的炎症、纤维化及应激等状态下,能够触发与IL-33的结合,从而引发多种病理生理学效应,而可溶性ST2则能够作为"诱饵"受体抑制这些过程。近来年发现可溶性ST2能够作为肾脏损伤及其进展的标志物。本文对可溶性ST2的生物结构特点及其在肾脏疾病早期损伤及预后中的作用进行综述,为早期发现并预防肾脏疾病提供新思路。

The prevalence of chronic kidney disease in Chinese adults is as high as 10.8 percent, and most of its complications have poor prognosis, which has become a major problem of public health in China. Therefore, finding specific biomarkers for early recognition of kidney injury is an urgent problem to be solved. As a member of IL-1 receptor family, the suppression of tumorigenicity 2 protein (ST2) can start combination with IL-33 under the conditions of inflammation, fibrosis, and stress in many diseases, thereby triggering a variety of pathophysiological effects, while the soluble form of ST2 can act as a "decoy" receptor to inhibit these processes. In recent years, it has been discovered that soluble ST2 can be used as a marker of renal injury and progression. This article reviewed both the biological structural characteristics of soluble ST2 and its role in the early injury and prognosis of renal diseases, in order to provide new ideas for early detection and prevention of renal diseases.

表1 sST2作为肾脏疾病的生物标志物研究及临床应用
[1]
Levey AS, Coresh J. Chronic kidney disease [J]. Lancet, 2012, 379(9811): 165-180.
[2]
Levey AS, de Jong PE, Coresh J, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report [J]. Kidney Int, 2011, 80(1): 17-28.
[3]
Pusceddu I, Dieplinger B, Mueller T. ST2 and the ST2/IL-33 signalling pathway-biochemistry and pathophysiology in animal models and humans [J]. Clin Chim Acta, 2019, 495: 493-500.
[4]
Villacorta H, Maisel AS. Soluble ST2 testing: a promising biomarker in the management of heart failure [J]. Arq Bras Cardiol, 2016, 106(2): 145-152.
[5]
Homsak E, Ekart R. Hemodiafiltration affects NT-proBNP but not ST2 serum concentration in end-stage renal disease patients [J]. Clin Biochem, 2016, 49(15): 1159-1163.
[6]
Homsak E, Ekart R. ST2 as a novel prognostic marker in end-stage renal disease patients on hemodiafiltration [J]. Clin Chim Acta, 2018, 477: 105-112.
[7]
De Berardinis B, Gaggin HK, Magrini L, et al. Comparison between admission natriuretic peptides, NGAL and sST2 testing for the prediction of worsening renal function in patients with acutely decompensated heart failure [J]. Clin Chem Lab Med, 2015, 53(4): 613-621.
[8]
Tominaga S, Inazawa J, Tsuji S. Assignment of the human ST2 gene to chromosome 2 at q11.2 [J]. Hum Genet, 1996, 97(5): 561-563.
[9]
Homsak E, Gruson D. Soluble ST2: a complex and diverse role in several diseases [J]. Clin Chim Acta, 2020, 507: 75-87.
[10]
Chen WY, Li LC, Yang JL. Emerging roles of IL-33/ST2 axis in renal diseases [J]. Int J Mol Sci, 2017, 18(4): 783.
[11]
Yang F, Zhu P, Duan L, et al. IL-33 and kidney disease [J]. Mol Med Rep, 2016, 13(1): 3-8.
[12]
Zhang J, Ramadan AM, Griesenauer B, et al. ST2 blockade reduces sST2-producing T cells while maintaining protective mST2-expressing T cells during graft-versus-host disease [J]. Sci Transl Med, 2015, 7(308): 308ra160.
[13]
Molofsky AB, Savage AK, Locksley RM. Interleukin-33 in tissue homeostasis, injury, and inflammation [J]. Immunity, 2015, 42(6): 1005-1019.
[14]
Vianello E, Dozio E, Tacchini L, et al. ST2/IL-33 signaling in cardiac fibrosis [J]. Int J Biochem Cell Biol, 2019, 116: 105619.
[15]
Pfeffer PE, Chen YH, Woszczek G, et al. Vitamin D enhances production of soluble ST2, inhibiting the action of IL-33 [J]. J Allergy Clin Immunol, 2015, 135(3): 824-827.
[16]
Torres VE. Treatment strategies and clinical trial design in ADPKD [J]. Adv Chronic Kidney Dis, 2010, 17(2): 190-204.
[17]
Bao YS, Na SP, Zhang P, et al. Characterization of interleukin-33 and soluble ST2 in serum and their association with disease severity in patients with chronic kidney disease [J]. J Clin Immunol, 2012, 32(3): 587-594.
[18]
Sinkovic A, Masnik K, Mihevc M. Predictors of acute kidney injury (AKI) in high-risk ST-elevation myocardial infarction (STEMI) patients: a single-center retrospective observational study [J]. Bosn J Basic Med Sci, 2019, 19(1): 101-108.
[19]
Vyshnevska I, Kopytsya M, Hilоva Y, et al. Biomarker sST2 as an early predictor of acute renal injury in patients with ST-segment elevation acute myocardial infarction [J]. Georgian Med News, 2020, 302: 53-58.
[20]
Kopytsya M, Hilova Y, Vyshnevska I, et al. Biomarker ST2 as a new predictor of acute kidney injury in patients with acute ST-segment elevation myocardial infarction [J]. Georgian Med News, 2018, 282: 61-65.
[21]
Tung YC, Chang CH, Chen YC, et al. Combined biomarker analysis for risk of acute kidney injury in patients with ST-segment elevation myocardial infarction [J]. PLoS One, 2015, 10(4): e0125282.
[22]
Ferhat M, Robin A, Giraud S, et al. Endogenous IL-33 contributes to kidney ischemia-reperfusion injury as an alarmin [J]. J Am Soc Nephrol, 2018, 29(4): 1272-1288.
[23]
Jin Y, Kong D, Liu C, et al. Role of IL-33 in transplant biology [J]. Eur Cytokine Netw, 2019, 30(2): 39-42.
[24]
Liang H, Xu F, Wen XJ, et al. Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion [J]. Eur J Pharmacol, 2017, 812: 18-27.
[25]
Griesenauer B, Paczesny S. The ST2/IL-33 axis in immune cells during inflammatory diseases [J]. Front Immunol, 2017, 8: 475.
[26]
Zhang Z, Liu X, Wang H, et al. Increased soluble ST2 and IL-4 serum levels are associated with disease severity in patients with membranous nephropathy [J]. Mol Med Rep, 2018, 17(2): 2778-2786.
[27]
Kuroki A, Iyoda M, Shibata T, et al. Th2 cytokines increase and stimulate B cells to produce IgG4 in idiopathic membranous nephropathy [J]. Kidney Int, 2005, 68(1): 302-310.
[28]
Prunotto M, Carnevali ML, Candiano G, et al. Autoimmunity in membranous nephropathy targets aldose reductase and SOD2 [J]. J Am Soc Nephrol, 2010, 21(3): 507-519.
[29]
Miller AM, Purves D, McConnachie A, et al. Soluble ST2 associates with diabetes but not established cardiovascular risk factors: a new inflammatory pathway of relevance to diabetes? [J]. PLoS One, 2012, 7(10): e47830.
[30]
Samuelsson M, Dereke J, Svensson MK, et al. Soluble plasma proteins ST2 and CD163 as early biomarkers of nephropathy in Swedish patients with diabetes, 15-34 years of age: a prospective cohort study [J]. Diabetol Metab Syndr, 2017, 9: 41.
[31]
Elsherbiny NM, Said E, Atef H, et al. Renoprotective effect of calycosin in high fat diet-fed/STZ injected rats: effect on IL-33/ST2 signaling, oxidative stress and fibrosis suppression [J]. Chem Biol Interact, 2020, 315: 108897.
[32]
Bapat SP, Myoung Suh J, Fang S, et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistanc [J]. Nature, 2015, 528(7580): 137-141.
[33]
Mok MY, Huang FP, Ip WK, et al. Serum levels of IL-33 and soluble ST2 and their association with disease activity in systemic lupus erythematosus [J]. Rheumatology (Oxford), 2010, 49(3): 520-527.
[34]
Italiani P, Manca ML, Angelotti F, et al. IL-1 family cytokines and soluble receptors in systemic lupus erythematosus [J]. Arthritis Res Ther, 2018, 20(1): 27.
[35]
Choi YB, Lee MJ, Park JT, et al. Prognostic value of soluble ST2 and soluble LR11 on mortality and cardiovascular events in peritoneal dialysis patients [J]. BMC Nephrol, 2020, 21(1): 228.
[36]
Tuegel C, Katz R, Alam M, et al. GDF-15, galectin 3, soluble ST2, and risk of mortality and cardiovascular events in CKD [J]. Am J Kidney Dis, 2018, 72(4): 519-528.
[37]
Alam ML, Katz R, Bellovich KA, et al. Soluble ST2 and galectin-3 and progression of CKD [J]. Kidney Int Rep, 2018, 4(1): 103-111.
[38]
Bansal N, Zelnick L, Shlipak MG, et al. Cardiac and stress biomarkers and chronic kidney disease progression: the CRIC study [J]. Clin Chem, 2019, 65(11): 1448-1457.
[39]
刘慧敏,李长红. 肾性继发性甲状旁腺功能亢进的内科治疗研究进展[J]. 广东化工202047(23): 71-72.
[40]
Bao YS, Na SP, Zhang P, et al. Characterization of interleukin-33 and soluble ST2 in serum and their association with disease severity in patients with chronic kidney disease [J]. J Clin Immunol, 2012, 32(3): 587-594.
[1] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[4] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[5] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[6] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[7] 杜静怡, 徐兴祥. 循环肿瘤细胞在非小细胞肺癌中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 596-600.
[8] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[9] 侍新宇, 孙金兵, 何宋兵. 血液生物标志物在直肠癌新辅助治疗中的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(03): 228-233.
[10] 张艳如, 苏晓乐, 王利华. 丝氨酸蛋白酶Corin与肾脏疾病的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 220-223.
[11] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[12] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[13] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[14] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
[15] 郭芳芳, 李珉珉. 狼疮肾炎无创生物标志物的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 271-275.
阅读次数
全文


摘要