切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (05) : 288 -291. doi: 10.3877/cma.j.issn.2095-3216.2021.05.010

综述

HIF-1α在慢性肾脏病中的研究进展
王东1, 倪洁1,()   
  1. 1. 150081 哈尔滨医科大学附属第一医院肾内科
  • 收稿日期:2021-05-25 出版日期:2021-10-20
  • 通信作者: 倪洁
  • 基金资助:
    黑龙江省自然科学基金(LH2019H025)

Progress of research on HIF-1α in chronic kidney disease

Dong Wang1, Jie Ni1,()   

  1. 1. Department of Nephrology, First Hospital Affiliated to Harbin Medical University, Harbin 150081, Heilongjiang Province, China
  • Received:2021-05-25 Published:2021-10-20
  • Corresponding author: Jie Ni
引用本文:

王东, 倪洁. HIF-1α在慢性肾脏病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 288-291.

Dong Wang, Jie Ni. Progress of research on HIF-1α in chronic kidney disease[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(05): 288-291.

低氧反应与慢性肾脏病(CKD)密切相关,低氧诱导因子(HIF)是机体适应低氧反应的主要调节因子。HIF-1α是HIF的氧敏感性亚基,在CKD发生和发展过程中发挥重要作用。本文就HIF-1α与CKD的炎症、贫血及矿物质与骨异常等的相关性研究作一总结,为进一步研究提供依据。

Hypoxia response is closely related to chronic kidney disease (CKD). Hypoxia-inducible factor (HIF) is the main regulator of the body′s adaptation to hypoxia. HIF-1α is an oxygen-sensitive subunit of HIF, and plays an important role in the occurrence and development of CKD. This article summarized the researches on the correlation between HIF-1α and CKD′s inflammation, anemia, or mineral and bone disorders, etc, in order to provide basis for further study.

图1 HIF-1α参与CKD炎症反应的相关调控机制
[1]
Movafagh S, Raj D, Sanaei-Ardekani M, et al. Hypoxia inducible factor 1: a urinary biomarker of kidney disease [J]. Clin Transl Sci, 2017, 10(3): 201-207.
[2]
Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1) [J]. Mol Pharmacol, 2006, 70(5): 1469-1480.
[3]
Liu M, Liu L, Bai M, et al. Hypoxia-induced activation of Twist/miR-214/E-cadherin axis promotes renal tubular epithelial cell mesenchymal transition and renal fibrosis [J]. Biochem Biophys Res Commun, 2018, 495(3): 2324-2330.
[4]
Wei X, Zhu X, Jiang L, et al. Recent advances in understanding the role of hypoxia-inducible factor 1α in renal fibrosis [J]. Int Urol Nephrol, 2020, 52(7): 1287-1295.
[5]
Li X, Chen W, Feng J, et al. The effects of HIF-1α overexpression on renal injury, immune disorders and mitochondrial apoptotic pathways in renal ischemia/reperfusion rats [J]. Transl Androl Urol, 2020, 9(5): 2157-2165.
[6]
Kang MK, Kim SI, Oh SY, et al. Tangeretin ameliorates glucose-induced podocyte injury through blocking epithelial to mesenchymal transition caused by oxidative stress and hypoxia [J]. Int J Mol Sci, 2020, 21(22): 8577.
[7]
Liu G, He L. Salidroside attenuates adriamycin-induced focal segmental glomerulosclerosis by inhibiting the hypoxia-inducible factor-1α expression through phosphatidylinositol 3-kinase/protein kinase B pathway [J]. Nephron, 2019, 142(3): 243-252.
[8]
端爱萍,杨敬平. 缺氧诱导因子与肾脏疾病[J]. 肾脏病与透析肾移植杂志2018, 27(2): 157-160.
[9]
Huang H, Fan Y, Gao Z, et al. HIF-1α contributes to Ang II-induced inflammatory cytokine production in podocytes [J]. BMC Pharmacol Toxicol, 2019, 20(1): 59.
[10]
Henze LA, Luong TTD, Boehme B, et al. Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells [J]. Aging (Albany NY), 2019, 11(15): 5445-5462.
[11]
Kapitsinou PP, Liu Q, Unger TL, et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia [J]. Blood, 2010, 116(16): 3039-3048.
[12]
Hirota K. HIF-α prolyl hydroxylase inhibitors and their implications for biomedicine: a comprehensive review [J]. Biomedicines, 2021, 9(5): 468.
[13]
Yeh TL, Leissing TM, Abboud MI, et al. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials [J]. Chem Sci, 2017, 8(11): 7651-7668.
[14]
Yan Z, Xu G. A novel choice to correct inflammation-induced anemia in CKD: oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat [J]. Front Med (Lausanne), 2020, 7: 393.
[15]
Wu K, Zhou K, Wang Y, et al. Stabilization of HIF-1α by FG-4592 promotes functional recovery and neural protection in experimental spinal cord injury [J]. Brain Res, 2016, 1632: 19-26.
[16]
Yu Y, Zhou Y, Cheng T, et al. Hypoxia enhances tenocyte differentiation of adipose-derived mesenchymal stem cells by inducing hypoxia-inducible factor-1α in a co-culture system [J]. Cell Prolif, 2016, 49(2): 173-184.
[17]
Yang R, Zhu Y, Wang Y, et al. HIF-1α/PDK4/autophagy pathway protects against advanced glycation end-products induced vascular smooth muscle cell calcification [J]. Biochem Biophys Res Commun, 2019, 517(3): 470-476.
[18]
Wu X, Zhao Q, Chen Z, et al. Estrogen inhibits vascular calcification in rats via hypoxia-induced factor-1α signaling [J]. Vascular, 2020, 28(4): 465-474.
[19]
Paloian NJ, Giachelli CM. A current understanding of vascular calcification in CKD [J]. Am J Physiol Renal Physiol, 2014, 307(8): F891-F900.
[20]
Mokas S, Larivière R, Lamalice L, et al. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification [J]. Kidney Int, 2016, 90(3): 598-609.
[21]
Nagy A, Pethö D, Gáll T, et al. Zinc inhibits HIF-prolyl hydroxylase inhibitor-aggravated VSMC calcification induced by high phosphate [J]. Front Physiol, 2020, 10: 1584.
[22]
Balogh E, Tóth A, Méhes G, et al. Hypoxia triggers osteochondrogenic differentiation of vascular smooth muscle cells in an HIF-1 (hypoxia-inducible factor 1)-dependent and reactive oxygen species-dependent manner [J]. Arterioscler Thromb Vasc Biol, 2019, 39(6): 1088-1099.
[23]
Knowles HJ. Distinct roles for the hypoxia-inducible transcription factors HIF-1α and HIF-2α in human osteoclast formation and function [J]. Sci Rep, 2020, 10(1): 21072.
[24]
Merceron C, Ranganathan K, Wang E, et al. Hypoxia-inducible factor 2α is a negative regulator of osteoblastogenesis and bone mass accrual [J]. Bone Res, 2019, 7: 7.
[25]
Zhou YM, Yang YY, Jing YX, et al. BMP9 reduces bone loss in ovariectomized mice by dual regulation of bone remodeling [J]. J Bone Miner Res, 2020, 35(5): 978-993.
[26]
朱冬燕,刘海岭,魏雅娟. 骨硬化蛋白在慢性肾脏病-矿物质和骨代谢异常中的研究进展[J]. 中国中西医结合肾病杂志2020, 21(9): 832-835.
[27]
Yorgan TA, Peters S, Jeschke A, et al. The anti-osteoanabolic function of sclerostin is blunted in mice carrying a high bone mass mutation of Lrp5 [J]. J Bone Miner Res, 2015, 30(7): 1175-1183.
[28]
Stegen S, Stockmans I, Moermans K, et al. Osteocytic oxygen sensing controls bone mass through epigenetic regulation of sclerostin [J]. Nat Commun, 2018, 9(1): 2557.
[29]
Miyauchi Y, Sato Y, Kobayashi T, et al. HIF1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis [J]. Proc Natl Acad Sci USA, 2013, 110(41): 16568-16573.
[30]
Zhu J, Tang Y, Wu Q, et al. HIF-1α facilitates osteocyte-mediated osteoclastogenesis by activating JAK2/STAT3 pathway in vitro [J]. J Cell Physiol, 2019, 234(11): 21182-21192.
[31]
Hulley PA, Bishop T, Vernet A, et al. Hypoxia-inducible factor 1-alpha does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2 [J]. J Pathol, 2017, 242(3): 322-333.
[32]
Andrukhova O, Schüler C, Bergow C, et al. Augmented fibroblast growth factor-23 secretion in bone locally contributes to impaired bone mineralization in chronic kidney disease in mice [J]. Front Endocrinol (Lausanne), 2018, 9: 311.
[33]
Pereira RC, Salusky IB, Roschger P, et al. Impaired osteocyte maturation in the pathogenesis of renal osteodystrophy [J]. Kidney Int, 2018, 94(5): 1002-1012.
[34]
Yamamoto S, Koyama D, Igarashi R, et al. Serum endocrine fibroblast growth factors as potential biomarkers for chronic kidney disease and various metabolic dysfunctions in aged patients [J]. Intern Med, 2020, 59(3): 345-355.
[35]
Clinkenbeard EL, Farrow EG, Summers LJ, et al. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice [J]. J Bone Miner Res, 2014, 29(2): 361-389.
[36]
Ito N, Wijenayaka AR, Prideaux M, et al. Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli [J]. Mol Cell Endocrinol, 2015, 399: 208-218.
[37]
Rodelo-Haad C, Santamaria R, Muñoz-Castañeda JR, et al. FGF23, biomarker or target? [J]. Toxins (Basel), 2019, 11(3): 175.
[38]
Daryadel A, Bettoni C, Haider T, et al. Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men [J]. Pflugers Arch, 2018, 470(10): 1569-1582.
[39]
Noonan ML, Ni P, Agoro R, et al. The HIF-PHI BAY 85-3934 (Molidustat) improves anemia and is associated with reduced levels of circulating FGF23 in a CKD mouse model [J]. J Bone Miner Res, 2021, 36(6): 1117-1130.
[40]
Elias RM, Dalboni MA, Coelho ACE, et al. CKD-MBD: from the pathogenesis to the identification and development of potential novel therapeutic targets [J]. Curr Osteoporos Rep, 2018, 16(6): 693-702.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[3] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[4] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[5] 高静, 严学倩, 及月茹, 郝淼旺, 刘苍春. 胃癌患者以慢性贫血为首发表现的高危因素Logistic分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 534-537.
[6] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[7] 周川鹏, 杨浩, 魏微阳, 王奇, 黄亚强. 微创与标准通道经皮肾镜治疗肾结石合并肾功能不全的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 470-475.
[8] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[9] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[12] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[13] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要