[1] |
Movafagh S, Raj D, Sanaei-Ardekani M, et al. Hypoxia inducible factor 1: a urinary biomarker of kidney disease [J]. Clin Transl Sci, 2017, 10(3): 201-207.
|
[2] |
Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1) [J]. Mol Pharmacol, 2006, 70(5): 1469-1480.
|
[3] |
Liu M, Liu L, Bai M, et al. Hypoxia-induced activation of Twist/miR-214/E-cadherin axis promotes renal tubular epithelial cell mesenchymal transition and renal fibrosis [J]. Biochem Biophys Res Commun, 2018, 495(3): 2324-2330.
|
[4] |
Wei X, Zhu X, Jiang L, et al. Recent advances in understanding the role of hypoxia-inducible factor 1α in renal fibrosis [J]. Int Urol Nephrol, 2020, 52(7): 1287-1295.
|
[5] |
Li X, Chen W, Feng J, et al. The effects of HIF-1α overexpression on renal injury, immune disorders and mitochondrial apoptotic pathways in renal ischemia/reperfusion rats [J]. Transl Androl Urol, 2020, 9(5): 2157-2165.
|
[6] |
Kang MK, Kim SI, Oh SY, et al. Tangeretin ameliorates glucose-induced podocyte injury through blocking epithelial to mesenchymal transition caused by oxidative stress and hypoxia [J]. Int J Mol Sci, 2020, 21(22): 8577.
|
[7] |
Liu G, He L. Salidroside attenuates adriamycin-induced focal segmental glomerulosclerosis by inhibiting the hypoxia-inducible factor-1α expression through phosphatidylinositol 3-kinase/protein kinase B pathway [J]. Nephron, 2019, 142(3): 243-252.
|
[8] |
端爱萍,杨敬平. 缺氧诱导因子与肾脏疾病[J]. 肾脏病与透析肾移植杂志,2018, 27(2): 157-160.
|
[9] |
Huang H, Fan Y, Gao Z, et al. HIF-1α contributes to Ang II-induced inflammatory cytokine production in podocytes [J]. BMC Pharmacol Toxicol, 2019, 20(1): 59.
|
[10] |
Henze LA, Luong TTD, Boehme B, et al. Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells [J]. Aging (Albany NY), 2019, 11(15): 5445-5462.
|
[11] |
Kapitsinou PP, Liu Q, Unger TL, et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia [J]. Blood, 2010, 116(16): 3039-3048.
|
[12] |
Hirota K. HIF-α prolyl hydroxylase inhibitors and their implications for biomedicine: a comprehensive review [J]. Biomedicines, 2021, 9(5): 468.
|
[13] |
Yeh TL, Leissing TM, Abboud MI, et al. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials [J]. Chem Sci, 2017, 8(11): 7651-7668.
|
[14] |
Yan Z, Xu G. A novel choice to correct inflammation-induced anemia in CKD: oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat [J]. Front Med (Lausanne), 2020, 7: 393.
|
[15] |
Wu K, Zhou K, Wang Y, et al. Stabilization of HIF-1α by FG-4592 promotes functional recovery and neural protection in experimental spinal cord injury [J]. Brain Res, 2016, 1632: 19-26.
|
[16] |
Yu Y, Zhou Y, Cheng T, et al. Hypoxia enhances tenocyte differentiation of adipose-derived mesenchymal stem cells by inducing hypoxia-inducible factor-1α in a co-culture system [J]. Cell Prolif, 2016, 49(2): 173-184.
|
[17] |
Yang R, Zhu Y, Wang Y, et al. HIF-1α/PDK4/autophagy pathway protects against advanced glycation end-products induced vascular smooth muscle cell calcification [J]. Biochem Biophys Res Commun, 2019, 517(3): 470-476.
|
[18] |
Wu X, Zhao Q, Chen Z, et al. Estrogen inhibits vascular calcification in rats via hypoxia-induced factor-1α signaling [J]. Vascular, 2020, 28(4): 465-474.
|
[19] |
Paloian NJ, Giachelli CM. A current understanding of vascular calcification in CKD [J]. Am J Physiol Renal Physiol, 2014, 307(8): F891-F900.
|
[20] |
Mokas S, Larivière R, Lamalice L, et al. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification [J]. Kidney Int, 2016, 90(3): 598-609.
|
[21] |
Nagy A, Pethö D, Gáll T, et al. Zinc inhibits HIF-prolyl hydroxylase inhibitor-aggravated VSMC calcification induced by high phosphate [J]. Front Physiol, 2020, 10: 1584.
|
[22] |
Balogh E, Tóth A, Méhes G, et al. Hypoxia triggers osteochondrogenic differentiation of vascular smooth muscle cells in an HIF-1 (hypoxia-inducible factor 1)-dependent and reactive oxygen species-dependent manner [J]. Arterioscler Thromb Vasc Biol, 2019, 39(6): 1088-1099.
|
[23] |
Knowles HJ. Distinct roles for the hypoxia-inducible transcription factors HIF-1α and HIF-2α in human osteoclast formation and function [J]. Sci Rep, 2020, 10(1): 21072.
|
[24] |
Merceron C, Ranganathan K, Wang E, et al. Hypoxia-inducible factor 2α is a negative regulator of osteoblastogenesis and bone mass accrual [J]. Bone Res, 2019, 7: 7.
|
[25] |
Zhou YM, Yang YY, Jing YX, et al. BMP9 reduces bone loss in ovariectomized mice by dual regulation of bone remodeling [J]. J Bone Miner Res, 2020, 35(5): 978-993.
|
[26] |
朱冬燕,刘海岭,魏雅娟. 骨硬化蛋白在慢性肾脏病-矿物质和骨代谢异常中的研究进展[J]. 中国中西医结合肾病杂志,2020, 21(9): 832-835.
|
[27] |
Yorgan TA, Peters S, Jeschke A, et al. The anti-osteoanabolic function of sclerostin is blunted in mice carrying a high bone mass mutation of Lrp5 [J]. J Bone Miner Res, 2015, 30(7): 1175-1183.
|
[28] |
Stegen S, Stockmans I, Moermans K, et al. Osteocytic oxygen sensing controls bone mass through epigenetic regulation of sclerostin [J]. Nat Commun, 2018, 9(1): 2557.
|
[29] |
Miyauchi Y, Sato Y, Kobayashi T, et al. HIF1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis [J]. Proc Natl Acad Sci USA, 2013, 110(41): 16568-16573.
|
[30] |
Zhu J, Tang Y, Wu Q, et al. HIF-1α facilitates osteocyte-mediated osteoclastogenesis by activating JAK2/STAT3 pathway in vitro [J]. J Cell Physiol, 2019, 234(11): 21182-21192.
|
[31] |
Hulley PA, Bishop T, Vernet A, et al. Hypoxia-inducible factor 1-alpha does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2 [J]. J Pathol, 2017, 242(3): 322-333.
|
[32] |
Andrukhova O, Schüler C, Bergow C, et al. Augmented fibroblast growth factor-23 secretion in bone locally contributes to impaired bone mineralization in chronic kidney disease in mice [J]. Front Endocrinol (Lausanne), 2018, 9: 311.
|
[33] |
Pereira RC, Salusky IB, Roschger P, et al. Impaired osteocyte maturation in the pathogenesis of renal osteodystrophy [J]. Kidney Int, 2018, 94(5): 1002-1012.
|
[34] |
Yamamoto S, Koyama D, Igarashi R, et al. Serum endocrine fibroblast growth factors as potential biomarkers for chronic kidney disease and various metabolic dysfunctions in aged patients [J]. Intern Med, 2020, 59(3): 345-355.
|
[35] |
Clinkenbeard EL, Farrow EG, Summers LJ, et al. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice [J]. J Bone Miner Res, 2014, 29(2): 361-389.
|
[36] |
Ito N, Wijenayaka AR, Prideaux M, et al. Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli [J]. Mol Cell Endocrinol, 2015, 399: 208-218.
|
[37] |
Rodelo-Haad C, Santamaria R, Muñoz-Castañeda JR, et al. FGF23, biomarker or target? [J]. Toxins (Basel), 2019, 11(3): 175.
|
[38] |
Daryadel A, Bettoni C, Haider T, et al. Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men [J]. Pflugers Arch, 2018, 470(10): 1569-1582.
|
[39] |
Noonan ML, Ni P, Agoro R, et al. The HIF-PHI BAY 85-3934 (Molidustat) improves anemia and is associated with reduced levels of circulating FGF23 in a CKD mouse model [J]. J Bone Miner Res, 2021, 36(6): 1117-1130.
|
[40] |
Elias RM, Dalboni MA, Coelho ACE, et al. CKD-MBD: from the pathogenesis to the identification and development of potential novel therapeutic targets [J]. Curr Osteoporos Rep, 2018, 16(6): 693-702.
|