切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (02) : 74 -77. doi: 10.3877/cma.j.issn.2095-3216.2020.02.005

所属专题: 文献

综述

Parkin的分子结构和生物学功能及其在肾脏疾病中的作用研究进展
王玲1, 何娅妮1,()   
  1. 1. 400042 陆军军医大学大坪医院肾内科
  • 收稿日期:2019-07-11 出版日期:2020-04-28
  • 通信作者: 何娅妮
  • 基金资助:
    国家自然科学基金面上项目(81670661,81770731)

Research progress of parkin′s molecular structure and biological function and its role in kidney disease

Ling Wang1, Yani He1,()   

  1. 1. Department of Nephrology, Daping Hospital, Army Military Medical University, Chongqing 400042, China
  • Received:2019-07-11 Published:2020-04-28
  • Corresponding author: Yani He
  • About author:
    Corresponding author: He Yani, Email:
引用本文:

王玲, 何娅妮. Parkin的分子结构和生物学功能及其在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2020, 09(02): 74-77.

Ling Wang, Yani He. Research progress of parkin′s molecular structure and biological function and its role in kidney disease[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(02): 74-77.

Parkin是一种E3泛素链接酶,可泛素化大量胞浆蛋白及线粒体外膜蛋白,具有广泛的、重要的生物学功能,目前已被证实可介导损伤线粒体的靶向识别和降解、转录、翻译、DNA修复、细胞存亡、细胞增殖和炎症等重要的生物学过程。近年来,Parkin在肾脏疾病中的作用逐渐受到关注。本文将主要介绍Parkin的结构、生物学功能及其在肾脏疾病中的作用。

Parkin is an E3 ubiquitin ligase, which can ubiquitinate a large number of cytoplasm proteins and mitochondrial outer membrane proteins, and has a wide range of important biological functions. It has been proved that parkin can mediate important biological processes such as targeted recognition and degradation of damaged mitochondria, gene transcription, translation, DNA repair, cell survival/death, cell proliferation, and inflammation. In recent years, parkin′s roles in renal disease have attracted increasing attention. In this paper, parkin′s molecular structure, biological functions, and its roles in renal disease were introduced.

图1 Parkin催化形成不同的泛素链[10]
图2 Parkin依赖的线粒体自噬[11]
图3 线粒体自噬水平下调参与AKI和DN的发生发展
[1]
Kitada T, Asakawa S, Hattori N,et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism [J]. Nature, 1998, 392(6676): 605-608.
[2]
Shinmura H, Hattori N, Mizuno Y, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase [J]. Nat Genet, 2000, 25(3): 302-305.
[3]
Panicker N, Dawson VL, Dawson TM. Activation mechanisms of the E3 ubiquitin ligase parkin [J]. Biochem J, 2017, 474(18): 3075-3086.
[4]
Sauvé V, Sung G, Soya N, et al. Mechanism of parkin activation by phosphorylation [J]. Nat Struct Mol Biol, 2018, 25(7): 623-630.
[5]
Tobias W, Swatek KN, Wagstaff JL,et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis [J]. EMBO J, 2015, 34(3): 307-325.
[6]
Harper JW, Ordureau A, Heo JM. Building and decoding ubiquitin chains for mitophagy [J]. Nat Rev Mol Cell Biol, 2018, 19(2): 93-108.
[7]
Kazlauskaite A, Martinez RJ, Wilkie S,et al. Binding to serine 65-phosphorylated ubiquitin primes parkin for optimal PINK1-dependent phosphorylation and activation [J]. EMBO Rep, 2015, 16(8): 939-954.
[8]
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson′s disease [J]. Neuron, 2015, 85(2): 257-273.
[9]
Jooho S, Seok KH, Hochul K,et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson′s disease [J]. Cell, 2016, 144(5): 689-702.
[10]
Shires SE, Kitsis RN, Gustafsson AB. Beyond mitophagy: the diversity and complexity of parkin function [J]. Circ Res, 2017, 120(8): 1234-1236.
[11]
Exner N, Lutz AK, Haass C,et al. Mitochondrial dysfunction in Parkinson′s disease: molecular mechanisms and pathophysiological consequences [J]. EMBO J, 2012, 31(14): 3038-3062.
[12]
Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney [J]. Nat Rev Nephrol, 2017, 13(10): 629-646.
[13]
Rub C, Wilkening A, Voos W. Mitochondrial quality control by the Pink1/parkin system [J]. Cell Tissue Res, 2016, 367(1): 1-13.
[14]
Ni HM, Willams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control [J]. Redox Biol, 2015, 4: 6-13.
[15]
Narres M, Claessen H, Droste S,et al. The incidence of end-stage renal disease in the diabetic (compared to the non-diabetic) population: a systematic review [J]. PLoS One, 2016, 11(1): e0147329.
[16]
Saxena S, Mathur A, Kakkar P. Critical role of mitochondrial dysfunction and impaired mitophagy in diabetic nephropathy [J]. J Cell Physiol, 2019, 234(11): 19223-19236.
[17]
Ming Z, Usman IM, Lin S,et al. Disruption of renal tubular mitochondrial quality control by myo-inositol oxygenase in diabetic kidney disease [J]. J Am Soc Nephrol, 2015, 26(6): 1304-1321.
[18]
Kaiffeng G, Junxi L, Yan H,et al. Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling [J]. PLoS One, 2015, 10(4): e0125176.
[19]
Chen K, Dai H, Yuan J,et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy [J]. Cell Death Dis, 2018, 9(2): 105.
[20]
袁俊杰,陈客宏,林利容,等. 泛素连接酶Parkin的表达与糖尿病肾病肾间质损伤的关系[J]. 第三军医大学学报,2017, 39(4): 349-354.
[21]
Tang C, Han H, Yan M, et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury [J]. Autophagy, 2018, 14(5): 880-897.
[22]
Lin Q, Li S, Jiang N,et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation [J]. Redox Biol, 2019, 26: 101254.
[23]
Zhao C, Chen Z, Xu X,et al. Pink1/parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury [J]. Exp Cell Res, 2017, 350(2): 390-397.
[24]
Szeto HH, Liu S, Soong Y,et al. Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1β and IL-18 and arrests CKD [J]. J Am Soc Nephrol, 2017, 28(5): 1437-1449.
[25]
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson′s disease [J]. Physiol Rev, 2011, 91(4): 1161-1218.
[26]
Kramer ER. The neuroprotective and regenerative potential of parkin and GDNF/Ret signaling in the midbrain dopaminergic system [J]. Neural Regen Res, 2015, 10(11): 1752-1753.
[27]
Song M, Dorn GW 2nd. Mitoconfusion: noncanonical functioning of dynamism factors in static mitochondria of the heart [J]. Cell Metab, 2015, 21(2): 195-205.
[28]
Kubli DA, Quinsay MN, Gustafsson AB. Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes [J]. Commun Integr Biol, 2013, 6(4): e24511.
[29]
Debapriya D, Riccardo C, Roberto B,et al. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities [J]. Circ Res, 2012, 110(8): 1125-1138.
[30]
Hoshino A, Mita Y, Okawa Y,et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart [J]. Nat Commun, 2013, 4: 2308.
[31]
Janicki JS, Brower GL. The role of myocardial fibrillar collagen in ventricular remodeling and function [J]. J Card Fail, 2002, 8(6 Suppl): S319-S325.
[32]
Selvaraju V, Taylor BS, Shasha M,et al. Somatic mutations of the Parkinson′s disease-associated gene PARK2 in glioblastoma and other human malignancies [J]. Nat Genet, 2010, 42(1): 77-82.
[33]
Lee SB, Kim JJ, Nam HJ, et al. Parkin regulates mitosis and genomic stability through Cdc20/Cdh1 [J]. Mol Cell, 2015, 60(1): 21-34.
[34]
Devine MJ, Helene PF, Wood NW. Parkinson′s disease and cancer: two wars, one front [J].Nat Rev Cancer, 2011, 11(11): 812-823.
[35]
Cen Z, Meihua L, Rui W,et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect [J]. Proc Natl Acad Sci USA, 2011, 108(39): 16259-16264.
[36]
Liu J, Zhang C, Zhao Y,et al. Parkin targets HIF-1alpha for ubiquitination and degradation to inhibit breast tumor progression [J]. Nat Commun, 2017, 8(1): 1823.
[37]
Lee MH, Cho Y, Jung BC,et al. Parkin induces G2/M cell cycle arrest in TNF-alpha-treated HeLa cells[J]. Biochem Biophys Res Commun, 2015, 464(1): 63-69.
[38]
Carroll R, Hollville E, Martin S. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1 [J]. Cell Rep, 2014, 9(4): 1538-1553.
[39]
Araya J, Tsubouchi K, Sato N,et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis [J]. Autophagy, 2019, 15(3): 510-526.
[40]
Lee S, She J, Deng B,et al. Multiple-level validation identifies PARK2 in the development of lung cancer and chronic obstructive pulmonary disease [J]. Oncotarget, 2016, 7(28): 44211-44223.
[1] 程世芳, 毛永芸, 唐生业, 侯志斌. 胃癌外周血TWA1 mRNA的表达与预后价值[J]. 中华普通外科学文献(电子版), 2020, 14(06): 421-424.
[2] 张艳如, 苏晓乐, 王利华. 丝氨酸蛋白酶Corin与肾脏疾病的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 220-223.
[3] 李德伦, 袁思宇, 刘安琪. 微小RNA-155在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(01): 39-43.
[4] 沈婉君, 王田田, 尹智炜, 谢院生. 免疫电镜技术在肾脏疾病诊断和研究中的应用[J]. 中华肾病研究电子杂志, 2022, 11(04): 219-223.
[5] 张爽, 刘书馨, 牟向伟, 姜博文, 董毳, 由莲莲. 人工智能技术在肾脏病中的应用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(06): 342-346.
[6] 张亚伟, 王兴智. 可溶性ST2蛋白在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 292-295.
[7] 张楷齐, 吴晶魁, 倪兆慧. 铁死亡在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 268-273.
[8] 季红娟, 林娟. 基于分类树方法构建糖尿病肾脏疾病发病风险模型[J]. 中华肾病研究电子杂志, 2021, 10(05): 246-251.
[9] 刘露露, 赖学莉, 谌卫, 郭志勇. 吲哚胺2,3-双加氧酶在肾脏疾病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(04): 224-226.
[10] 杜晓艳, 黄蓉双, 马良, 付平. 脂肪酸结合蛋白4在肾脏疾病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(01): 44-46.
[11] 李琦, 朱晗玉, 徐莉, 韩秋霞, 闫景瑶, 赵焕焕, 丁潇楠, 范秋灵. 足细胞损伤时细胞周期调控及MDM2-p53通路作用的研究进展[J]. 中华肾病研究电子杂志, 2020, 09(04): 176-180.
[12] 田冬琴, 刘开翔, 占志朋, 谢席胜. 糖尿病肾病规范化诊断研究进展[J]. 中华肾病研究电子杂志, 2019, 08(03): 132-137.
[13] 李雨竹, 滕兰波, 刘书馨. 半乳糖凝集素-3与肾脏疾病的关系[J]. 中华肾病研究电子杂志, 2019, 08(02): 91-93.
[14] 刘沫言, 谢院生, 董哲毅, 张雪光, 孙雪峰, 张冬, 周建辉, 朱晗玉, 陈香美. 血红蛋白在鉴别糖尿病肾病与非糖尿病肾脏疾病中的作用[J]. 中华肾病研究电子杂志, 2018, 07(06): 271-276.
[15] 任姜汶, 张小明, 戴欢子, 张建国, 李开龙, 何娅妮, 林利容. 老年肾脏病患者临床及病理特征分析[J]. 中华肾病研究电子杂志, 2018, 07(04): 163-166.
阅读次数
全文


摘要