[1] |
Kitada T, Asakawa S, Hattori N,et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism [J]. Nature, 1998, 392(6676): 605-608.
|
[2] |
Shinmura H, Hattori N, Mizuno Y, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase [J]. Nat Genet, 2000, 25(3): 302-305.
|
[3] |
Panicker N, Dawson VL, Dawson TM. Activation mechanisms of the E3 ubiquitin ligase parkin [J]. Biochem J, 2017, 474(18): 3075-3086.
|
[4] |
Sauvé V, Sung G, Soya N, et al. Mechanism of parkin activation by phosphorylation [J]. Nat Struct Mol Biol, 2018, 25(7): 623-630.
|
[5] |
Tobias W, Swatek KN, Wagstaff JL,et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis [J]. EMBO J, 2015, 34(3): 307-325.
|
[6] |
Harper JW, Ordureau A, Heo JM. Building and decoding ubiquitin chains for mitophagy [J]. Nat Rev Mol Cell Biol, 2018, 19(2): 93-108.
|
[7] |
Kazlauskaite A, Martinez RJ, Wilkie S,et al. Binding to serine 65-phosphorylated ubiquitin primes parkin for optimal PINK1-dependent phosphorylation and activation [J]. EMBO Rep, 2015, 16(8): 939-954.
|
[8] |
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson′s disease [J]. Neuron, 2015, 85(2): 257-273.
|
[9] |
Jooho S, Seok KH, Hochul K,et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson′s disease [J]. Cell, 2016, 144(5): 689-702.
|
[10] |
Shires SE, Kitsis RN, Gustafsson AB. Beyond mitophagy: the diversity and complexity of parkin function [J]. Circ Res, 2017, 120(8): 1234-1236.
|
[11] |
Exner N, Lutz AK, Haass C,et al. Mitochondrial dysfunction in Parkinson′s disease: molecular mechanisms and pathophysiological consequences [J]. EMBO J, 2012, 31(14): 3038-3062.
|
[12] |
Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney [J]. Nat Rev Nephrol, 2017, 13(10): 629-646.
|
[13] |
Rub C, Wilkening A, Voos W. Mitochondrial quality control by the Pink1/parkin system [J]. Cell Tissue Res, 2016, 367(1): 1-13.
|
[14] |
Ni HM, Willams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control [J]. Redox Biol, 2015, 4: 6-13.
|
[15] |
Narres M, Claessen H, Droste S,et al. The incidence of end-stage renal disease in the diabetic (compared to the non-diabetic) population: a systematic review [J]. PLoS One, 2016, 11(1): e0147329.
|
[16] |
Saxena S, Mathur A, Kakkar P. Critical role of mitochondrial dysfunction and impaired mitophagy in diabetic nephropathy [J]. J Cell Physiol, 2019, 234(11): 19223-19236.
|
[17] |
Ming Z, Usman IM, Lin S,et al. Disruption of renal tubular mitochondrial quality control by myo-inositol oxygenase in diabetic kidney disease [J]. J Am Soc Nephrol, 2015, 26(6): 1304-1321.
|
[18] |
Kaiffeng G, Junxi L, Yan H,et al. Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling [J]. PLoS One, 2015, 10(4): e0125176.
|
[19] |
Chen K, Dai H, Yuan J,et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy [J]. Cell Death Dis, 2018, 9(2): 105.
|
[20] |
袁俊杰,陈客宏,林利容,等. 泛素连接酶Parkin的表达与糖尿病肾病肾间质损伤的关系[J]. 第三军医大学学报,2017, 39(4): 349-354.
|
[21] |
Tang C, Han H, Yan M, et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury [J]. Autophagy, 2018, 14(5): 880-897.
|
[22] |
Lin Q, Li S, Jiang N,et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation [J]. Redox Biol, 2019, 26: 101254.
|
[23] |
Zhao C, Chen Z, Xu X,et al. Pink1/parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury [J]. Exp Cell Res, 2017, 350(2): 390-397.
|
[24] |
Szeto HH, Liu S, Soong Y,et al. Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1β and IL-18 and arrests CKD [J]. J Am Soc Nephrol, 2017, 28(5): 1437-1449.
|
[25] |
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson′s disease [J]. Physiol Rev, 2011, 91(4): 1161-1218.
|
[26] |
Kramer ER. The neuroprotective and regenerative potential of parkin and GDNF/Ret signaling in the midbrain dopaminergic system [J]. Neural Regen Res, 2015, 10(11): 1752-1753.
|
[27] |
Song M, Dorn GW 2nd. Mitoconfusion: noncanonical functioning of dynamism factors in static mitochondria of the heart [J]. Cell Metab, 2015, 21(2): 195-205.
|
[28] |
Kubli DA, Quinsay MN, Gustafsson AB. Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes [J]. Commun Integr Biol, 2013, 6(4): e24511.
|
[29] |
Debapriya D, Riccardo C, Roberto B,et al. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities [J]. Circ Res, 2012, 110(8): 1125-1138.
|
[30] |
Hoshino A, Mita Y, Okawa Y,et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart [J]. Nat Commun, 2013, 4: 2308.
|
[31] |
Janicki JS, Brower GL. The role of myocardial fibrillar collagen in ventricular remodeling and function [J]. J Card Fail, 2002, 8(6 Suppl): S319-S325.
|
[32] |
Selvaraju V, Taylor BS, Shasha M,et al. Somatic mutations of the Parkinson′s disease-associated gene PARK2 in glioblastoma and other human malignancies [J]. Nat Genet, 2010, 42(1): 77-82.
|
[33] |
Lee SB, Kim JJ, Nam HJ, et al. Parkin regulates mitosis and genomic stability through Cdc20/Cdh1 [J]. Mol Cell, 2015, 60(1): 21-34.
|
[34] |
Devine MJ, Helene PF, Wood NW. Parkinson′s disease and cancer: two wars, one front [J].Nat Rev Cancer, 2011, 11(11): 812-823.
|
[35] |
Cen Z, Meihua L, Rui W,et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect [J]. Proc Natl Acad Sci USA, 2011, 108(39): 16259-16264.
|
[36] |
Liu J, Zhang C, Zhao Y,et al. Parkin targets HIF-1alpha for ubiquitination and degradation to inhibit breast tumor progression [J]. Nat Commun, 2017, 8(1): 1823.
|
[37] |
Lee MH, Cho Y, Jung BC,et al. Parkin induces G2/M cell cycle arrest in TNF-alpha-treated HeLa cells[J]. Biochem Biophys Res Commun, 2015, 464(1): 63-69.
|
[38] |
Carroll R, Hollville E, Martin S. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1 [J]. Cell Rep, 2014, 9(4): 1538-1553.
|
[39] |
Araya J, Tsubouchi K, Sato N,et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis [J]. Autophagy, 2019, 15(3): 510-526.
|
[40] |
Lee S, She J, Deng B,et al. Multiple-level validation identifies PARK2 in the development of lung cancer and chronic obstructive pulmonary disease [J]. Oncotarget, 2016, 7(28): 44211-44223.
|