切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (02) : 78 -81. doi: 10.3877/cma.j.issn.2095-3216.2020.02.006

所属专题: 文献

综述

基于肾纤维化机制的药物临床研究进展
罗丛伟1, 何晓洋1, 彭芬芬1, 王育娴1, 陈毅华1, 龙海波1,()   
  1. 1. 510280 南方医科大学珠江医院
  • 收稿日期:2020-01-14 出版日期:2020-04-28
  • 通信作者: 龙海波
  • 基金资助:
    国家自然科学基金(81673792、81704134、81873346、U1801288、81900607); 广东省科技计划项目(2017A020215158)

Advances in clinical research of drug treatment based on renal fibrosis mechanism

Congwei Luo1, Xiaoyang He1, Fenfen Peng1, Yuxian Wang1, Yihua Chen1, Haibo Long1,()   

  1. 1. Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
  • Received:2020-01-14 Published:2020-04-28
  • Corresponding author: Haibo Long
  • About author:
    Corresponding author: Long Haibo, Email:
引用本文:

罗丛伟, 何晓洋, 彭芬芬, 王育娴, 陈毅华, 龙海波. 基于肾纤维化机制的药物临床研究进展[J]. 中华肾病研究电子杂志, 2020, 09(02): 78-81.

Congwei Luo, Xiaoyang He, Fenfen Peng, Yuxian Wang, Yihua Chen, Haibo Long. Advances in clinical research of drug treatment based on renal fibrosis mechanism[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(02): 78-81.

肾纤维化是所有进展期慢性肾脏病的共有病理特征,预示肾损伤反应进入了以组织结构重塑和器官功能丧失为标志的共同终末通路。目前,临床上尚缺乏针对肾纤维化有效的治疗药物,导致大量肾纤维化患者不可避免地发展为终末期肾病。基于肾纤维化分子机制的研究进展,近年来多种具有潜在抗纤维化作用的药物已经进入了临床试验阶段。本文对部分受到密切关注的试验药物进行综述,以期对后续临床研究的开展带来帮助。

Renal fibrosis is a common pathological feature of all advanced chronic kidney diseases, indicating that the renal injury has stepped into a common terminal pathway marked by remodeling of renal tissue structure and loss of renal function. At present, there is still a lack of effective therapeutic drugs for clinical treatment of renal fibrosis, and a large number of patients with renal fibrosis inevitably enter end-stage renal disease. Based on the progress of the molecular mechanism of renal fibrosis, a number of potential anti-fibrotic drugs have come into clinical trials in recent years. This review focused on some of the experimental drugs that have received intense attention, aiming to provide help for follow-up clinical researches.

[1]
Humphreys BD. Mechanisms of renal fibrosis [J]. Annu Rev Physiol, 2018, 80: 309-326.
[2]
Nistor I, De Sutter J, Drechsler C, et al. Effect of renin-angiotensin-aldosterone system blockade in adults with diabetes mellitus and advanced chronic kidney disease not on dialysis: a systematic review and meta-analysis [J]. Nephrol Dial Transplant, 2017, 33(1): 12-22.
[3]
Liu BC, Tang TT, Lv LL, et al. Renal tubule injury: a driving force toward chronic kidney disease [J]. Kidney Int, 2018, 93(3): 568-579.
[4]
Tang PMK, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis [J]. Nat Rev Nephrol, 2019, 15(3): 144-158.
[5]
Ikezumi Y, Suzuki T, Karasawa T, et al. Identification of alternatively activated macrophages in new-onset paediatric and adult immunoglobulin A nephropathy: potential role in mesangial matrix expansion [J]. Histopathology, 2011, 58(2): 198-210.
[6]
Eardley KS, Kubal C, Zehnder D, et al. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease [J]. Kidney Int, 2008, 74(4): 495-504.
[7]
de Zeeuw D, Bekker P, Henkel E, et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial [J]. Lancet Diabetes Endocrinol, 2015, 3(9): 687-696.
[8]
Han H, Zhu J, Wang Y, et al. Renal recruitment of B lymphocytes exacerbates tubulointerstitial fibrosis by promoting monocyte mobilization and infiltration after unilateral ureteral obstruction [J]. J Pathol, 2017, 241(1): 80-90.
[9]
Dahan K, Debiec H, Plaisier E, et al. Rituximab for severe membranous nephropathy: a 6-month trial with extended follow-up [J]. J Am Soc Nephrol, 2017, 28(1): 348-358.
[10]
Lafayette RA, Canetta PA, Rovin BH, et al. A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction [J]. J Am Soc Nephrol, 2017, 28(4): 1306-1313.
[11]
Rovin BH, Furie R, Latinis K, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the lupus nephritis assessment with rituximab study [J]. Arthritis Rheum, 2012, 64(4): 1215-1226.
[12]
Dekkers CCJ, Petrykiv S, Laverman GD, et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers [J]. Diabetes Obes Metab, 2018, 20(8): 1988-1993.
[13]
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy [J]. N Engl J Med, 2019, 380(24): 2295-2306.
[14]
Kohan DE, Barton M. Endothelin and endothelin antagonists in chronic kidney disease [J]. Kidney Int, 2014, 86(5): 896-904.
[15]
Wenzel RR, Littke T, Kuranoff S, et al. Avosentan reduces albumin excretion in diabetics with macroalbuminuria [J]. J Am Soc Nephrol, 2009, 20(3): 655-664.
[16]
Mann JF, Green D, Jamerson K, et al. Avosentan for overt diabetic nephropathy [J]. J Am Soc Nephrol, 2010, 21(3): 527-535.
[17]
Heerspink HJL, Parving HH, Andress DL, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial [J]. Lancet, 2019, 393(10184): 1937-1947.
[18]
Sharma K, Ix JH, Mathew AV, et al. Pirfenidone for diabetic nephropathy [J]. J Am Soc Nephrol, 2011, 22(6): 1144-1151.
[19]
Vincenti F, Fervenza FC, Campbell KN, et al. A phase 2, double-blind, placebo-controlled, randomized study of fresolimumab in patients with steroid-resistant primary focal segmental glomerulosclerosis [J]. Kidney Int Rep, 2017, 2(5): 800-810.
[20]
Voelker J, Berg PH, Sheetz M, et al. Anti-TGF-beta1 antibody therapy in patients with diabetic nephropathy [J]. J Am Soc Nephrol, 2017, 28(3): 953-962.
[21]
Ramazani Y, Knops N, Elmonem MA, et al. Connective tissue growth factor (CTGF) from basics to clinics [J]. Matrix Biol, 2018, 68-69: 44-66.
[22]
Adler SG, Schwartz S, Williams ME, et al. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria [J]. Clin J Am Soc Nephrol, 2010, 5(8): 1420-1428.
[23]
Romagnani P, Remuzzi G, Glassock R, et al. Chronic kidney disease [J]. Nat Rev Dis Primers, 2017, 3: 17088.
[24]
Heerspink HJL, Persson F, Brenner BM, et al. Renal outcomes with aliskiren in patients with type 2 diabetes: a prespecified secondary analysis of the ALTITUDE randomised controlled trial [J]. Lancet Diabetes Endocrinol, 2016, 4(4): 309-317.
[25]
Chen YM, Chiang WC, Lin SL. Therapeutic efficacy of pentoxifylline on proteinuria and renal progression: an update [J]. J Biomed Sci, 2017, 24(1): 84.
[26]
Perkins RM, Aboudara MC, Uy AL, et al. Effect of pentoxifylline on GFR decline in CKD: a pilot, double-blind, randomized, placebo-controlled trial [J]. Am J Kidney Dis, 2009, 53(4): 606-616.
[27]
Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, et al. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial [J]. J Am Soc Nephrol, 2015, 26(1): 220-229.
[28]
Leporini C, Pisano A, Russo E, et al. Effect of pentoxifylline on renal outcomes in chronic kidney disease patients: a systematic review and meta-analysis [J]. Pharmacol Res, 2016, 107: 315-332.
[29]
Tumlin JA, Galphin CM, Rovin BH. Advanced diabetic nephropathy with nephrotic range proteinuria: a pilot study of the long-term efficacy of subcutaneous ACTH gel on proteinuria, progression of CKD, and urinary levels of VEGF and MCP-1 [J]. J Diabetes Res, 2013, 2013: 489869.
[30]
Davis TM, Ting R, Best JD, et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study [J]. Diabetologia, 2011, 54(2): 280-290.
[31]
Brosius FC, Tuttle KR, Kretzler M. JAK inhibition in the treatment of diabetic kidney disease [J]. Diabetologia, 2016, 59(8): 1624-1627.
[32]
Levey AS, Gansevoort RT, Coresh J, et al. Change in albuminuria and GFR as end points for clinical trials in early stages of CKD: a scientific workshop sponsored by the National Kidney Foundation in collaboration with the US Food and Drug Administration and European Medicines Agency [J]. Am J Kidney Dis, 2019, 75(1): 84-104.
[1] 周熙鹏, 谢丽, 刘宝瑞. 乳腺癌治疗性肿瘤疫苗研究进展[J]. 中华乳腺病杂志(电子版), 2022, 16(06): 360-364.
[2] 刘强, 杨畅. 2020年圣安东尼奥乳腺癌研讨会更新解读[J]. 中华乳腺病杂志(电子版), 2021, 15(02): 65-70.
[3] 刘桦, 陈雅峻, 龚建平. 调节性T细胞在肝移植免疫诱导及治疗中的作用[J]. 中华移植杂志(电子版), 2021, 15(04): 239-243.
[4] 石晓萍, 方洁, 王婷, 许青, 吕迁洲. 肝移植受者万古霉素治疗药物监测现状分析及群体药代动力学软件的临床验证[J]. 中华移植杂志(电子版), 2021, 15(01): 15-19.
[5] 刘文博, 史新立, 赵鹏, 邢丽娜, 张书培, 汤菊莉, 黄长瑾. 疝修补补片类医疗器械的临床试验设计考量[J]. 中华疝和腹壁外科杂志(电子版), 2020, 14(04): 327-330.
[6] 胡蓉, 李涛, 周林福. 阿帕替尼在肺癌临床治疗中的应用进展[J]. 中华肺部疾病杂志(电子版), 2020, 13(04): 540-543.
[7] 王锡山. 随机对照临床试验在外科中的局限性[J]. 中华结直肠疾病电子杂志, 2021, 10(05): 457-461.
[8] 薛庆云, 赵立连, 徐旭阳, 郑其开, 傅志俭, 张元民, 王延秀, 熊晓扬, 许亚男, 石磊, 王飞. 奇正消痛贴膏治疗渐冻期冻结肩的多中心随机对照临床试验[J]. 中华肩肘外科电子杂志, 2021, 09(04): 352-359.
[9] 张隆业, 刘维萍, 张彦芬, 郭永力, 管仁苹, 邵雪, 王兆宇, 李灿. 胰激肽原酶对他克莫司诱导的大鼠肾脏损伤的保护作用[J]. 中华肾病研究电子杂志, 2021, 10(04): 198-204.
[10] 张慧芳, 王瑞兰. 万古霉素在成人危重症患者中的应用进展[J]. 中华重症医学电子杂志, 2021, 07(03): 263-267.
[11] 林英鸿, 张宇鹏, 夏金言, 黄力, 李钻芳, 林昆哲, 王守森. 中国临床试验注册中心创伤性颅脑损伤相关临床试验的特征分析[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(02): 74-80.
[12] 中国医师协会神经内科医师分会, 阿尔茨海默病药物临床试验写作组. 阿尔茨海默病药物临床试验中国专家共识[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 9-20.
[13] 王泽华, 刘英慧, 张庆, 刘枭寅, 盛恒松. 深度学习辅助决策医疗器械技术审评临床评价要求及思考[J]. 中华临床医师杂志(电子版), 2021, 15(09): 641-645.
[14] 黎俊聪, 黄莹, 杨婵娟, 屠燕. 钠-葡萄糖共转运体2抑制剂治疗心力衰竭的研究进展[J]. 中华心脏与心律电子杂志, 2023, 11(01): 45-49.
[15] 娄宇轩, 孙伟, 孔祥清. 经导管卵圆孔未闭介入封堵术预防卒中的研究进展[J]. 中华心脏与心律电子杂志, 2022, 10(01): 23-26.
阅读次数
全文


摘要