切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (06) : 247 -252. doi: 10.3877/cma.j.issn.2095-3216.2020.06.002

所属专题: 经典病例 总编推荐 经典病例 文献

论著

液相色谱质谱法对47例非透析慢性肾脏病患者色氨酸-犬尿氨酸通路的分析
洪浩1, 周苏雅2, 陈月1, 李明1,()   
  1. 1. 215000 苏州,苏州大学附属第一医院肾内科
    2. 200000 上海,复旦大学附属金山医院肾内科
  • 收稿日期:2020-09-12 出版日期:2020-12-28
  • 通信作者: 李明
  • 基金资助:
    苏州市2018年度科技发展计划(SYSD2018091)

Analysis of tryptophan-kynurenine pathway in 47 non-dialysis patients with chronic kidney disease by liquid chromatography-mass spectrometry

Hao Hong1, Suya Zhou2, Yue Chen1, Ming Li1,()   

  1. 1. Department of Nephrology, First Hospital Affiliated to Suzhou University, Suzhou 215000, Jiangsu Province
    2. Department of Nephrology, Jinshan Hospital Affiliated to Fudan University, Shanghai 200000; China
  • Received:2020-09-12 Published:2020-12-28
  • Corresponding author: Ming Li
  • About author:
    Corresponding author: Li Ming, Email:
引用本文:

洪浩, 周苏雅, 陈月, 李明. 液相色谱质谱法对47例非透析慢性肾脏病患者色氨酸-犬尿氨酸通路的分析[J]. 中华肾病研究电子杂志, 2020, 09(06): 247-252.

Hao Hong, Suya Zhou, Yue Chen, Ming Li. Analysis of tryptophan-kynurenine pathway in 47 non-dialysis patients with chronic kidney disease by liquid chromatography-mass spectrometry[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(06): 247-252.

目的

利用液相色谱-质谱(LC-MS)代谢组学方法探讨慢性肾脏病(chronic kidney disease,CKD)1-4期非透析患者色氨酸(tryptophan, Trp)-犬尿氨酸(kynurenine, Kyn)通路的改变及意义。

方法

2018年3月至2018年6月苏州大学附属第一医院肾内科CKD1~4期非透析患者47例,同期30例健康志愿者作为对照组。应用LC-MS法对受试者血浆进行代谢物分析。应用Human Metabolome Database (HMDB),MassBank,LipidMaps等数据库匹配不同CKD分期Kyn通路差异代谢物,绘制受试者曲线(receiver operating characteristic, ROC)评估差异代谢物敏感性与特异性。采用Metaboanalyst软件进行代谢通路拓扑分析。以Kyn/Trp比值(KT值)表示Kyn通路限速酶吲哚胺-2,3-双加氧酶(indoleamine-2,3-dioxygenase, IDO)活性。

结果

Kyn在CKD2期即有明显升高(P<0.05),犬尿喹啉酸(kynurenine acid, KA)在CKD3期明显升高(P<0.01),二者随CKD分期增加呈上升趋势(P<0.01)。KT值在CKD2期即有升高(P<0.05),且随CKD分期增加呈上升趋势(P<0.01)。Trp代谢在CKD早期即出现紊乱。

结论

Trp-Kyn通路在CKD早期即增强,Kyn、KA、IDO可能作为CKD早期诊断及进展的生物标志物。

Objective

To explore the changes and significance of the tryptophan (Trp)- kynurenine (Kyn) pathway in non-dialysis patients with chronic kidney disease (CKD) stage 1-4 by liquid chromatography-mass spectrometry (LC-MS) metabolomics method.

Methods

From March 2018 to June 2018, 47 non-dialysis patients with CKD stage 1-4 from the Department of Nephrology, First Hospital Affiliated to Suzhou University were recruited, together with 30 healthy volunteers as the control group. LC-MS was used to analyze the blood samples of the subjects. Databases as Human Metabolome Database (HMDB), MassBank, and LipidMaps, etc, were used to match different metabolites of the kynurenine pathway of different CKD stages, and draw the receiver operating characteristic (ROC) curve to evaluate the sensitivity and specificity of the different metabolites. The Metaboanalyst software was used for metabolic pathway topology analysis. The ratio of Kyn to Trp (KT value) was used to express the activity of the indoleamine-2, 3-dioxygenase (IDO), a rate-limiting enzyme in the kynurenine pathway.

Results

In comparison with those of the control, Kyn increased in CKD stage 2 (P<0.05) while kynurenic acid (KA) increased in CKD stage 3 (P<0.01). Both Kyn and KA increased with the progressive loss of renal function (P<0.01). KT value increased in CKD stage 2 (P<0.05), and also increased with the progressive loss of renal function (P<0.01). Disorder of Trp metabolism was observed in the early stage of CKD.

Conclusion

The Trp-Kyn pathway was enhanced in the early stage of CKD. Kyn, KA, and IDO might be used as biomarkers of both CKD early diagnosis and CKD progression.

表1 47例非透析CKD患者及30例对照一般临床资料
图1 47例非透析CKD患者与30例对照血浆基峰色谱图
图2 47例非透析CKD患者与30例对照血浆样本OPLS-DA图
图3 色氨酸-犬尿氨酸代谢通路
表2 CKD1期患者和对照组色氨酸-犬尿氨酸通路血浆差异代谢物鉴定
图4 色氨酸-犬尿氨酸通路关键代谢物变化趋势
图5 色氨酸代谢通路影响因子
[15]
Mohib K, Wang S, Guan QN, et al. Indoleamine 2,3-dioxygenase expression promotes renal ischemia-reperfusion injury [J]. Am J Physiol Renal Physiol, 2008, 295(1): F226-F234.
[16]
Gargaro M, Vacca C, Massari S, et al. Engagement of nuclear coactivator 7 by 3-hydroxyanthranilic acid enhances activation of aryl hydrocarbon receptor in immunoregulatory dendritic cells [J]. Front Immunol, 2019, 10: 1973.
[17]
Wang CC, Yang CJ, Wu LH, et al. Eicosapentaenoic acid reduces indoleamine 2,3-dioxygenase 1 expression in tumor cells [J]. Int J Med Sci, 2018, 15(12): 1296-1303.
[18]
Zhu X, Li S, Zhang Q, et al. Correlation of increased Th17/Treg cell ratio with endoplasmic reticulum stress in chronic kidney disease [J]. Medicine (Baltimore), 2018, 97(20): e10748.
[19]
Mondanelli G, Iacono A, Carvalho A, et al. Amino acid metabolism as drug target in autoimmune diseases [J]. Autoimmun Rev, 2019, 18(4): 334-348.
[1]
Bikbov B, Purcell C, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the global burden of disease study 2017 [J]. Lancet, 2020, 395(10225): 709-733.
[2]
Barrios C, Spector TD, Menni C. Blood, urine and faecal metabolite profiles in the study of adult renal disease [J]. Arch Biochem Biophys, 2016, 589: 81-92.
[3]
Gathungu RM, Kautz R, Kristal BS, et al. The integration of LC-MS and NMR for the analysis of low molecular weight trace analytes in complex matrices [J]. Mass Spectrom Rev, 2020, 39(1-2): 35-54.
[4]
Andrassy KM. Comments on 'KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease’ [J]. Kidney Int, 2013, 84(3): 622-623.
[5]
Sorgdrager F, Naude P, Kema IP, et al. Tryptophan metabolism in inflammaging: from biomarker to therapeutic target [J]. Front Immunol, 2019, 10: 2565.
[6]
Addi T, Dou L, Burtey S. Tryptophan-derived uremic toxins and thrombosis in chronic kidney disease [J]. Toxins (Basel), 2018, 10(10): 412.
[7]
Zinellu A, Sotgia S, Mangoni AA, et al. Impact of cholesterol lowering treatment on plasma kynurenine and tryptophan concentrations in chronic kidney disease: Relationship with oxidative stress improvement [J]. Nutr Metab Cardiovas, 2015, 25(2): 153-159.
[8]
Yoshimura H, Sakai T, Kuwahara Y, et al. Effects of kynurenine metabolites on mesangial cell proliferation and gene expression [J]. Exp Mol Pathol, 2009, 87(1): 70-75.
[9]
Kalaska B, Pawlak K, Domaniewski T, et al. Elevated levels of peripheral kynurenine decrease bone strength in rats with chronic kidney disease [J]. Front Physiol, 2017, 8: 836.
[10]
Bartosiewicz J, Kaminski T, Pawlak K, et al. The activation of the kynurenine pathway in a rat model with renovascular hypertension [J]. Exp Biol Med (Maywood), 2017, 242(7): 750-761.
[11]
Vavrincova-Yaghi D, Seelen MA, Kema IP, et al. Early posttransplant tryptophan metabolism predicts long-term outcome of human kidney transplantation [J]. Transplantation, 2015, 99(8): e97-e104.
[12]
Dschietzig TB, Kellner KH, Sasse K, et al. Plasma kynurenine predicts severity and complications of heart failure and associates with established biochemical and clinical markers of disease [J]. Kidney Blood Press Res, 2019, 44(4): 765-776.
[13]
Boros FA, Vecsei L. Immunomodulatory effects of genetic alterations affecting the kynurenine pathway [J]. Front Immunol, 2019, 10: 2570.
[14]
Schefold JC, Zeden JP, Fotopoulou C, et al. Increased indoleamine 2,3-dioxygenase (IDO) activity and elevated serum levels of tryptophan catabolites in patients with chronic kidney disease: a possible link between chronic inflammation and uraemic symptoms [J]. Nephrol Dial Transplant, 2009, 24(6): 1901-1908.
[1] 王丽萍, 徐磊, 蒋天安, 强嘉璘. 微血管成像联合Qpack定量分析技术评估慢性肾脏病患者肾皮质区血流灌注的价值[J]. 中华医学超声杂志(电子版), 2023, 20(03): 292-296.
[2] 王璐, 王宇, 曾俊, 陈伟, 江华. 机器学习与多组学结合推动精准营养的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 540-544.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 周川鹏, 杨浩, 魏微阳, 王奇, 黄亚强. 微创与标准通道经皮肾镜治疗肾结石合并肾功能不全的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 470-475.
[5] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[6] 杨长沅, 凌曦淘, 丘伽美, 段若兰, 李琴, 林玉婕, 秦新东, 侯海晶, 卢富华, 苏国彬. 慢性肾脏病患者衰弱的筛查/评估工具研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 229-233.
[7] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[8] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[9] 王诗远, 张爱华. 慢性肾脏病相关认知障碍的发生机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(03): 163-167.
[10] 石晓璟, 苏晓乐, 王利华. 直接口服抗凝药在慢性肾脏病合并心房颤动患者中的应用[J]. 中华肾病研究电子杂志, 2023, 12(01): 26-31.
[11] 罗珊, 欧三桃. 激活素A在慢性肾脏病血管钙化中的作用机制研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 353-356.
[12] 熊琳, 欧三桃. 慢性肾脏病的"骨-血管轴"的交互因子研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 342-346.
[13] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[14] 李昌艳, 顾芳, 刘娟, 唐明敏. 非布司他治疗慢性肾脏病伴发高尿酸血症的疗效及预后影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(03): 279-284.
[15] 王宁, 吴慢莉, 杨东霞. 代谢组学生物标志物:子宫内膜异位症诊疗的新靶点[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1280-1283.
阅读次数
全文


摘要