切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2018, Vol. 07 ›› Issue (01) : 44 -46. doi: 10.3877/cma.j.issn.2095-3216.2018.01.010

所属专题: 文献

综述

烟酰胺腺嘌呤二核苷酸磷酸氧化酶与肾间质纤维化
张丽1, 乔晞1,()   
  1. 1. 030001 太原,山西医科大学第二医院肾内科 山西省肾脏病研究所
  • 收稿日期:2017-11-30 出版日期:2018-02-28
  • 通信作者: 乔晞
  • 基金资助:
    山西省留学回国人员科技活动择优资助项目(2017-29); 山西省卫生计生委项目(201601043)

NADPH oxidase and renal interstitial fibrosis

Li Zhang1, Xi Qiao1,()   

  1. 1. Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan 030001, Shanxi Province, China
  • Received:2017-11-30 Published:2018-02-28
  • Corresponding author: Xi Qiao
  • About author:
    Corresponding author: Qiao Xi, Email:
引用本文:

张丽, 乔晞. 烟酰胺腺嘌呤二核苷酸磷酸氧化酶与肾间质纤维化[J]. 中华肾病研究电子杂志, 2018, 07(01): 44-46.

Li Zhang, Xi Qiao. NADPH oxidase and renal interstitial fibrosis[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2018, 07(01): 44-46.

氧化应激在肾间质纤维化发生发展中起着重要的作用,活性氧(ROS)是氧化应激过程中最重要的信号分子,烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶(NOX)途径生成的ROS是肾间质纤维化时ROS的主要来源,NOX4是NOX在肾脏的主要亚型,NOX1、NOX2、NOX5在肾脏中也有表达。NOX产生的ROS通过多种途径介导肾间质纤维化发生和进展。本文就NOX的不同亚型在肾间质纤维化中作用的研究进展做一综述。

Oxidative stress plays an important role in the development and progression of renal interstitial fibrosis. Reactive oxygen species (ROS) are the most important signal molecules in the process of oxidative stress. ROS produced by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) pathway is the major source of ROS during renal interstitial fibrosis. NOX4 is the major subtype of NOX in the kidney, and NOX1, NOX2, and NOX5 are also expressed in the kidney. The ROS produced by NOX mediates the development and progression of renal interstitial fibrosis through various pathways. This article reviewed the progress of research on roles of different subtypes of NOX in renal interstitial fibrosis.

[1]
Kawahara T, Quinn MT, Lambeth JD. Molecular evolution of the reactive oxygen generating NADPH oxidase (Nox/Duox) family of enzymes [J]. BMC Evol Biol, 2007, 7: 109.
[2]
Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology [J]. Physiol Rev, 2007, 87(1): 245-313.
[3]
Jha JC, Banal C, Chow BS, et al. Diabetes and kidney disease: role of oxidative stress [J]. Antioxid Redox Signal, 2016, 25(12): 657-684.
[4]
Touyz RM, Briones AM, Sedeek M, et al. NOX isoforms and reactive oxygen species in vascular health [J]. Mol Interv, 2011, 11(1): 27-35.
[5]
Sedeek M, Nasrallah R, Rhian M, et al. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe [J]. J Am Soc Nephrol, 2013, 24(10): 1512-1518.
[6]
Barnes JL, Gorin Y. Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases [J]. Kidney Int, 2011, 79(9): 944-956.
[7]
Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis [J]. J Am Soc Nephrol, 2010, 21(11): 1819-1834.
[8]
Mizuguchi Y, Chen J, Seshan SV, et al. A novel cell-permeable antioxidant peptide decreases renal tubular apoptosis and damage in unilateral ureteral obstruction [J]. Am J Physiol Renal Physiol, 2008, 295(5): F1545- F1553.
[9]
Grande MT, López-Novoa JM. Fibroblast activation and myofibroblast generation in obstructive nephropathy [J]. Nat Rev Nephrol, 2009, 5(6): 319-328.
[10]
Okamura DM, Pasichnyk K, Lopez-Guisa JM, et al.Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis [J]. Am J Physiol Renal Physiol, 2011, 300(1): F245-F253.
[11]
Gill PS, Wilcox CS. NADPH oxidases in the kidney [J]. Antioxid Redox Signal, 2006, 8(9-10): 1597-1607.
[12]
Jha JC, GraySP, Barit D, et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy [J]. J Am Soc Nephrol, 2014, 25(6): 1237-1254.
[13]
Bondi CD, Manickam N, Lee DY, et al. NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts [J]. J Am Soc Nephrol, 2010, 21(1): 93-102.
[14]
Sugiyama H, Kobayashi M, Wang DH, et al. Telmisartan inhibits both oxidative stress and renal fibrosis after unilateral ureteral obstruction in acatalasemic mice [J]. Nephrol Dial Transplant, 2005, 20(12): 2670-2680.
[15]
Eid AA, Lee DY, Roman LJ, et al. Sestrin2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression [J]. Mol Cell Biol, 2013, 33: 3439-3460.
[16]
Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling [J]. Cell Res, 2011(1), 21(1): 103-115.
[17]
Mehrabian M, Sparkes RS, Mohandas T, et al. Localization of monocyte chemotactic protein-1 gene (SCYA2) to human chromosome 17q11.2-q21.1 [J]. Genomics, 1991, 9(1): 200-203.
[18]
Qin W, Chung AC, Huang XR, et al. Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs [J]. Mol Ther, 2013, 21(2): 388-398.
[19]
Rhyu DY, Yang Y, Ha H, et al. Role of reactive oxygen species in TGF-b1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells [J]. J Am Soc Nephrol, 2005, 16(3): 667-675.
[20]
Manickam N, Patel M, Griendling KK, et al. RhoA/Rho kinase mediates TGF-beta1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species [J]. Am J Physiol Renal Physiol, 2014, 307(2): F159-F171.
[21]
Wei XF, Zhou QG, Hou FF, et al. Advanced oxidation protein products induce mesangial cell perturbation through PKC-dependent activation of NADPH oxidase [J]. Am J Physiol Renal Physiol, 2009, 296(2): F427-F437.
[22]
Xie P, Sun L, Nayak B, et al. C/EBP-beta modulates transcription of tubulointerstitial nephritis antigen in obstructive uropathy [J]. J Am Soc Nephrol, 2009, 20(4): 807-819.
[23]
New DD, Block K, Bhandhari B, et al. IGF-I increases the expression of fibronectin by Nox4-dependent Akt phosphorylation in renal tubular epithelial cells [J]. Am J Physiol Cell Physiol, 2012, 302(1): C122-C130.
[24]
Oudit GY, Liu GC, Zhong J, et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy [J]. Diabetes, 2010, 59(2): 529-538.
[25]
Gao L, Huang W, Li J. NOX1 abet mesangial fibrogenesis via iNOS induction in diabetes [J]. Mol Cell Biochem, 2013, 382(1-2): 185-191.
[26]
Yogi A, Mercure C, Touyz J, et al. Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension [J]. Hypertension, 2008, 51(2): 500-506.
[27]
Yu P, Han W, Villar VA, et al. Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells [J]. Redox Biol, 2014, 2: 570-579.
[1] 尹娟, 杨兴, 李平, 徐旻馨, 鲍玉, 张志鹏, 薛慧. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 26-36.
[2] 赵路, 张哲儒, 贾骏麒, 宗春琳, 景莉, 郭凯, 田磊. M2型巨噬细胞抑制放射后骨髓间充质干细胞向肌成纤维细胞转化的实验研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 198-206.
[3] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[4] 张江河, 李玉红, 李余杰, 张洪壮, 张一鸣. 低浓度过氧化氢对HaCat细胞增殖和大鼠创面愈合的作用与机制研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(02): 75-82.
[5] 孙文琦, 吴欣荣, 王运荣, 赵贝, 窦晓坛, 李雯, 邹晓平, 王雷, 陈敏. 结直肠上皮细胞ROS及FH检测对结直肠癌筛查的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 326-330.
[6] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[7] 李燕辰, 李建宁, 涂晓文, 李峰生. 核辐射导致急性肾损伤中铁死亡的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 338-341.
[8] 吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.
[9] 尹丽丽, 管陈, 赵龙, 蒋伟, 秦振志, 李宸羽, 徐岩. 虾青素通过CCN1调节肾间质纤维化的潜在分子作用机制[J]. 中华肾病研究电子杂志, 2022, 11(06): 318-326.
[10] 谭惠丰, 曹沛莲, 张慧, 强胜. Notch信号通路对IgA肾病大鼠外周血Th17细胞数量及功能的影响[J]. 中华肾病研究电子杂志, 2021, 10(05): 259-264.
[11] 史晓蕾, 刘丽华, 卢雪红. 间充质干细胞延缓肾间质纤维化的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(04): 227-231.
[12] 都一鸣, 陈鑫, 赵世光. 急性缺血性脑卒中氧化应激机制的研究进展[J]. 中华神经创伤外科电子杂志, 2021, 07(02): 121-124.
[13] 隆昱洲, 柳华, 张云茜, 李兴统, 范云虎, 尚正良, 宋镇妤, 罗丽华. 依达拉奉预适应延长急性缺血性脑卒中溶栓时间窗的研究及ROS/TXNIP/NLRP3通路参与机制的探讨[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 65-74.
[14] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[15] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
阅读次数
全文


摘要