切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (03) : 124 -126. doi: 10.3877/cma.j.issn.2095-3216.2020.03.007

所属专题: 文献

综述

从细胞角度探讨毛细血管稀疏与肾间质纤维化
魏雪娇1, 张洋洋1, 朱晓宇1, 黄秀1, 姜丽丽1, 赵丹1, 龙梦团1, 杜玉君1,()   
  1. 1. 130021 长春,吉林大学第一医院肾病科
  • 收稿日期:2020-01-04 出版日期:2020-06-28
  • 通信作者: 杜玉君

Capillary rarefaction and renal interstitial fibrosis: a cellular perspective

Xuejiao Wei1, Yangyang Zhang1, Xiaoyu Zhu1, Xiu Huang1, Lili Jiang1, Dan Zhao1, Mengtuan Long1, Yujun Du1,()   

  1. 1. Department of Nephrology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
  • Received:2020-01-04 Published:2020-06-28
  • Corresponding author: Yujun Du
  • About author:
    Corresponding author: Du Yujun, Email:
引用本文:

魏雪娇, 张洋洋, 朱晓宇, 黄秀, 姜丽丽, 赵丹, 龙梦团, 杜玉君. 从细胞角度探讨毛细血管稀疏与肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2020, 09(03): 124-126.

Xuejiao Wei, Yangyang Zhang, Xiaoyu Zhu, Xiu Huang, Lili Jiang, Dan Zhao, Mengtuan Long, Yujun Du. Capillary rarefaction and renal interstitial fibrosis: a cellular perspective[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(03): 124-126.

肾脏毛细血管稀疏既是慢性肾脏病(CKD)导致的结果,又是促进CKD向肾间质纤维化(RIF)进展的关键环节。了解可能造成毛细血管稀疏的发生机制,对探讨改善血管稀疏状态,促进血管新生,减少RIF的发生发展具有重要意义。本文拟从肾脏毛细血管周围细胞即内皮细胞、周细胞及内皮祖细胞着手,对其可能影响肾脏正常血管网结构的病理生理过程及其可能参与血管新生的修复机制作一综述,从而为减轻RIF、延缓CKD进展提供新的治疗思路。

Capillary rarefaction of the kidney is not only a result of CKD, but also a crucial link to promote the progression of CKD to renal interstitial fibrosis (RIF). Learning about the mechanism that may cause the renal capillary rarefaction is of great significance for improving vascular rarefaction and angiogenesis, as well as reducing the development of RIF. This review started with the renal cells around capillaries, such as endothelial cells, pericytes, and endothelial progenitor cells, then summarized their pathophysiological processes that may affect the normal vascular network structure of the kidney and their possible involvement in the repair mechanism of angiogenesis, so as to provide new treatment ideas for improving RIF and slowing down the CKD progression.

[1]
Herzlinger D, Hurtado R. Patterning the renal vascular bed [J]. Semin Cell Dev Biol, 2014, 36: 50-56.
[2]
Afsar B, Afsar RE, Dagel T, et al. Capillary rarefaction from the kidney point of view [J]. Clin Kidney J, 2018, 11(3): 295-301.
[3]
Kida Y, Tchao BN, Yamaguchi I. Peritubular capillary rarefaction: a new therapeutic target in chronic kidney disease [J]. Pediatr Nephrol, 2014, 29(3): 333-342.
[4]
Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease [J]. Nephrol Dial Transplant, 2011, 26(4): 1132-1137.
[5]
Ballermann BJ, Obeidat M. Tipping the balance from angiogenesis to fibrosis in CKD [J]. Kidney Int Suppl (2011), 2014, 4(1): 45-52.
[6]
Gewin L, Zent R, Pozzi A. Progression of chronic kidney disease: too much cellular talk causes damage [J]. Kidney Int, 2017, 91(3): 552-560.
[7]
Tanaka T, Nangaku M. Angiogenesis and hypoxia in the kidney [J]. Nat Rev Nephrol, 2013, 9(4): 211-222.
[8]
Liu S, Soong Y, Seshan SV, et al. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis [J]. Am J Physiol Renal Physiol, 2014, 306(9): F970-F980.
[9]
Mendes KL, Lelis DF, Santos SHS. Nuclear sirtuins and inflammatory signaling pathways [J]. Cytokine Growth Factor Rev, 2017, 38: 98-105.
[10]
Kida Y, Zullo JA, Goligorsky MS. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation [J]. Biochem Biophys Res Commun, 2016, 478(3): 1074-1079.
[11]
He X, Zeng H, Chen ST, et al. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction [J]. J Mol Cell Cardiol, 2017, 112: 104-113.
[12]
Wu J, Zeng Z, Zhang W, et al. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases [J]. Free Radic Res, 2019, 53(2): 139-149.
[13]
He X, Zeng H, Chen JX. Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease [J]. J Cell Physiol, 2019, 234(3): 2252-2265.
[14]
Fligny C, Duffield JS. Activation of pericytes: recent insights into kidney fibrosis and microvascular rarefaction [J]. Curr Opin Rheumatol, 2013, 25(1): 78-86.
[15]
Pan S-Y, Chang Y-T, Lin S-L. Microvascular pericytes in healthy and diseased kidneys [J]. Int J Nephrol Renovasc Dis, 2014, 7: 39-48.
[16]
Schrimpf C, Teebken OE, Wilhelmi M, et al. The role of pericyte detachment in vascular rarefaction [J]. J Vasc Res, 2014, 51(4): 247-258.
[17]
Eklund L, Saharinen P. Angiopoietin signaling in the vasculature [J]. Exp Cell Res, 2013, 319(9): 1271-1280.
[18]
Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis [J]. Science, 1997, 277(5322): 55-60.
[19]
Chiang WC, Huang YC, Fu TI, et al. Angiopoietin 1 influences ischemic reperfusion renal injury via modulating endothelium survival and regeneration [J]. Mol Med, 2019, 25(1): 5.
[20]
Loganathan K, Salem Said E, Winterrowd E, et al. Angiopoietin-1 deficiency increases renal capillary rarefaction and tubulointerstitial fibrosis in mice [J]. PLoS One, 2018, 13(1): e0189433.
[21]
Lin SL, Chang FC, Schrimpf C, et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis [J]. Am J Pathol, 2011, 178(2): 911-923.
[22]
Wong S-P, Rowley JE, Redpath AN, et al. Pericytes, mesenchymal stem cells and their contributions to tissue repair [J]. Pharmacol Ther, 2015, 151: 107-120.
[23]
Chade AR, Zhu X-Y, Krier JD, et al. Endothelial progenitor cells homing and renal repair in experimental renovascular disease [J]. Stem Cells, 2010, 28(6): 1039-1047.
[24]
Fernandes T, Nakamuta JS, Magalhaes FC, et al. Exercise training restores the endothelial progenitor cells number and function in hypertension: implications for angiogenesis [J]. J Hypertens, 2012, 30(11): 2133-2143.
[25]
Cantaluppi V, Gatti S, Medica D, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells [J]. Kidney Int, 2012, 82(4): 412-427.
[26]
Yang J, Wang M, Zhu F, et al. Putative endothelial progenitor cells do not promote vascular repair but attenuate pericyte-myofibroblast transition in UUO-induced renal fibrosis [J]. Stem Cell Res Ther, 2019, 10(1): 104.
[27]
He J, Liu X, Su C, et al. Inhibition of mitochondrial oxidative damage improves reendothelialization capacity of endothelial progenitor cells via SIRT3 (Sirtuin 3)-enhanced SOD2 (superoxide dismutase 2) deacetylation in hypertension [J]. Arterioscler Thromb Vasc Biol, 2019, 39(8): 1682-1698.
[28]
Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey [J]. Lancet, 2012, 379(9818): 815-822.
[1] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J/OL]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[2] 刘伟, 安杰, 智亮辉, 陈金辉. 阿帕替尼联合新辅助化疗对局部晚期结肠癌的临床疗效研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 199-203.
[3] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[4] 余玲玲, 彭倪, 刘小虎, 刘聪慧. 蟛蜞菊内酯上调miR-190表达抑制高糖诱导的人视网膜血管内皮细胞凋亡[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 339-345.
[5] 王静, 丁红. 益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1、α-平滑肌肌动蛋白表达的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 161-165.
[6] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[7] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J/OL]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[8] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[9] 张艺, 任秀君, 郭孟玮, 赵雅芳, 李一凡, 李佳阳, 任晓暄, 邬继红, 卢海洋. 电针预处理对脑缺血再灌注大鼠行为学及外周血内皮祖细胞的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 71-77.
[10] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[11] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(09): 972-979.
[12] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J/OL]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[13] 岑妍慧, 高月, 林江, 刘鹏, 贾微, 杨瑞, 黄威, 刘鑫, 黄泽萍, 宁志莹. 水解南珠液通过Wnt/β-catenin通路调节细胞自噬对人微血管内皮细胞氧化应激损伤的影响[J/OL]. 中华临床医师杂志(电子版), 2023, 17(01): 72-79.
[14] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J/OL]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
[15] 冯盼, 梁秋华. 细胞间相互作用及代谢微环境在动脉钙化中的作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 193-198.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?