[1] |
Herzlinger D, Hurtado R. Patterning the renal vascular bed [J]. Semin Cell Dev Biol, 2014, 36: 50-56.
|
[2] |
Afsar B, Afsar RE, Dagel T, et al. Capillary rarefaction from the kidney point of view [J]. Clin Kidney J, 2018, 11(3): 295-301.
|
[3] |
Kida Y, Tchao BN, Yamaguchi I. Peritubular capillary rarefaction: a new therapeutic target in chronic kidney disease [J]. Pediatr Nephrol, 2014, 29(3): 333-342.
|
[4] |
Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease [J]. Nephrol Dial Transplant, 2011, 26(4): 1132-1137.
|
[5] |
Ballermann BJ, Obeidat M. Tipping the balance from angiogenesis to fibrosis in CKD [J]. Kidney Int Suppl (2011), 2014, 4(1): 45-52.
|
[6] |
Gewin L, Zent R, Pozzi A. Progression of chronic kidney disease: too much cellular talk causes damage [J]. Kidney Int, 2017, 91(3): 552-560.
|
[7] |
Tanaka T, Nangaku M. Angiogenesis and hypoxia in the kidney [J]. Nat Rev Nephrol, 2013, 9(4): 211-222.
|
[8] |
Liu S, Soong Y, Seshan SV, et al. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis [J]. Am J Physiol Renal Physiol, 2014, 306(9): F970-F980.
|
[9] |
Mendes KL, Lelis DF, Santos SHS. Nuclear sirtuins and inflammatory signaling pathways [J]. Cytokine Growth Factor Rev, 2017, 38: 98-105.
|
[10] |
Kida Y, Zullo JA, Goligorsky MS. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation [J]. Biochem Biophys Res Commun, 2016, 478(3): 1074-1079.
|
[11] |
He X, Zeng H, Chen ST, et al. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction [J]. J Mol Cell Cardiol, 2017, 112: 104-113.
|
[12] |
Wu J, Zeng Z, Zhang W, et al. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases [J]. Free Radic Res, 2019, 53(2): 139-149.
|
[13] |
He X, Zeng H, Chen JX. Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease [J]. J Cell Physiol, 2019, 234(3): 2252-2265.
|
[14] |
Fligny C, Duffield JS. Activation of pericytes: recent insights into kidney fibrosis and microvascular rarefaction [J]. Curr Opin Rheumatol, 2013, 25(1): 78-86.
|
[15] |
Pan S-Y, Chang Y-T, Lin S-L. Microvascular pericytes in healthy and diseased kidneys [J]. Int J Nephrol Renovasc Dis, 2014, 7: 39-48.
|
[16] |
Schrimpf C, Teebken OE, Wilhelmi M, et al. The role of pericyte detachment in vascular rarefaction [J]. J Vasc Res, 2014, 51(4): 247-258.
|
[17] |
Eklund L, Saharinen P. Angiopoietin signaling in the vasculature [J]. Exp Cell Res, 2013, 319(9): 1271-1280.
|
[18] |
Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis [J]. Science, 1997, 277(5322): 55-60.
|
[19] |
Chiang WC, Huang YC, Fu TI, et al. Angiopoietin 1 influences ischemic reperfusion renal injury via modulating endothelium survival and regeneration [J]. Mol Med, 2019, 25(1): 5.
|
[20] |
Loganathan K, Salem Said E, Winterrowd E, et al. Angiopoietin-1 deficiency increases renal capillary rarefaction and tubulointerstitial fibrosis in mice [J]. PLoS One, 2018, 13(1): e0189433.
|
[21] |
Lin SL, Chang FC, Schrimpf C, et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis [J]. Am J Pathol, 2011, 178(2): 911-923.
|
[22] |
Wong S-P, Rowley JE, Redpath AN, et al. Pericytes, mesenchymal stem cells and their contributions to tissue repair [J]. Pharmacol Ther, 2015, 151: 107-120.
|
[23] |
Chade AR, Zhu X-Y, Krier JD, et al. Endothelial progenitor cells homing and renal repair in experimental renovascular disease [J]. Stem Cells, 2010, 28(6): 1039-1047.
|
[24] |
Fernandes T, Nakamuta JS, Magalhaes FC, et al. Exercise training restores the endothelial progenitor cells number and function in hypertension: implications for angiogenesis [J]. J Hypertens, 2012, 30(11): 2133-2143.
|
[25] |
Cantaluppi V, Gatti S, Medica D, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells [J]. Kidney Int, 2012, 82(4): 412-427.
|
[26] |
Yang J, Wang M, Zhu F, et al. Putative endothelial progenitor cells do not promote vascular repair but attenuate pericyte-myofibroblast transition in UUO-induced renal fibrosis [J]. Stem Cell Res Ther, 2019, 10(1): 104.
|
[27] |
He J, Liu X, Su C, et al. Inhibition of mitochondrial oxidative damage improves reendothelialization capacity of endothelial progenitor cells via SIRT3 (Sirtuin 3)-enhanced SOD2 (superoxide dismutase 2) deacetylation in hypertension [J]. Arterioscler Thromb Vasc Biol, 2019, 39(8): 1682-1698.
|
[28] |
Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey [J]. Lancet, 2012, 379(9818): 815-822.
|