切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (03) : 120 -123. doi: 10.3877/cma.j.issn.2095-3216.2020.03.006

所属专题: 文献

综述

HIF-PHD轴在肾脏缺血再灌注损伤中的作用
闫景瑶1, 邵凤民2, 赵焕焕3, 韩秋霞3, 丁潇楠3, 耿文佳4, 朱晗玉3,()   
  1. 1. 100853 北京,解放军总医院第一医学中心肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室;450052 河南,郑州大学河南省人民医院肾脏病科、郑州大学医学科学院
    2. 450052 河南,郑州大学河南省人民医院肾脏病科、郑州大学医学科学院
    3. 100853 北京,解放军总医院第一医学中心肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室
    4. 510000 广州,广州中医药大学第二临床医学院暨广东省中医院
  • 收稿日期:2020-01-02 出版日期:2020-06-28
  • 通信作者: 朱晗玉
  • 基金资助:
    国家自然科学基金(61971441、61671479、81804056); 国家重点研发项目(2016YFC1305500)

The role of the HIF-PHD axis in renal ischemia-reperfusion injury

Jingyao Yan1, Fengmin Shao2, Huanhuan Zhao3, Qiuxia Han3, Xiaonan Ding3, Wenjia Geng4, Hanyu Zhu3,()   

  1. 1. Department of Nephrology, First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853; Department of Nephrology, Henan Provincial People′s Hospital Affiliated to Zhengzhou University, Zhengzhou University Academy of Medical Sciences, Zhengzhou 450052, Henan Province
    2. Department of Nephrology, Henan Provincial People′s Hospital Affiliated to Zhengzhou University, Zhengzhou University Academy of Medical Sciences, Zhengzhou 450052, Henan Province
    3. Department of Nephrology, First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853
    4. Guangdong Provincial Hospital of Traditional Chinese Medicine, Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510000, Guangdong Province; China
  • Received:2020-01-02 Published:2020-06-28
  • Corresponding author: Hanyu Zhu
  • About author:
    Corresponding author: Zhu Hanyu, Email:
引用本文:

闫景瑶, 邵凤民, 赵焕焕, 韩秋霞, 丁潇楠, 耿文佳, 朱晗玉. HIF-PHD轴在肾脏缺血再灌注损伤中的作用[J]. 中华肾病研究电子杂志, 2020, 09(03): 120-123.

Jingyao Yan, Fengmin Shao, Huanhuan Zhao, Qiuxia Han, Xiaonan Ding, Wenjia Geng, Hanyu Zhu. The role of the HIF-PHD axis in renal ischemia-reperfusion injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(03): 120-123.

缺血再灌注是急性肾损伤(AKI)中肾功能迅速恶化的主要原因。在AKI过程中,HIF发挥重要作用。本文就HIF-PHD轴的概念、调节机制及其在肾损伤缺血再灌注中的作用进行综述,以更好了解急性肾损伤的保护机制,寻找新的治疗靶点和肾脏保护方法。

Ischemia reperfusion is the main cause of rapid deterioration of renal function in acute kidney injury (AKI). It has been known that hypoxia-inducible factor (HIF) plays an important role in the process of AKI. This paper reviewed the conception, regulatory mechanism, and the role of the HIF-prolyl hydroxylase (PHD) axis in renal ischemia-reperfusion injury, so as to better understand the mechanism of AKI, helping to find new therapeutic targets and renal protection methods.

[11]
Scholz CC, Cavadas MA, Tambuwala MM, et al. Regulation of IL-1b-induced NF-kappaB by hydroxylases links key hypoxic and inflammatory signaling pathways [J]. Proc Natl Acad Sci USA, 2013, 110(46): 18490-18495.
[12]
Deschoemaeker S, Di Conza G, Lilla S, et al. PHD1 regulates p53-mediated colorectal cancer chemoresistance [J]. EMBO Mol Med, 2015, 7(10): 1350-1365.
[13]
Kapitsinou PP, Sano H, Michael M,et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury [J]. J Clin Invest, 2014, 124(6): 2396-2409.
[14]
Zuk A, Bonventre JV. Acute kidney injury [J]. Ann Rev Med, 2016, 67: 293-307.
[15]
Sendoel A, Hengartner MO. Apoptotic cell death under hypoxia [J]. Physiology (Bethesda), 2014, 29(3): 168-176.
[16]
Moore E, Bellomo R. Erythropoietin (EPO) in acute kidney injury [J]. Ann Intensive Care, 2011, 1(1): 3.
[17]
Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1 [J]. Nat Med, 2004, 10(8): 858-864.
[18]
Koshiji M, Huang LE. Dynamic balancing of the dual nature of HIF-1α for cell survival [J]. Cell Cycle, 2004, 3(7): 853-854.
[19]
Kumar S, Vaidya M. Hypoxia inhibits mesenchymal stem cell proliferation through HIF1α-dependent regulation of P27 [J]. Mol Cell Biochem, 2016, 415(1-2): 29-38.
[20]
Xu X, Song N, Zhang X, et al. Renal protection mediated by hypoxia inducible factor-1α depends on proangiogenesis function of miR-21 by targeting thrombospondin [J]. Transplantation, 2017, 101(8): 1811-1819.
[21]
Shoji K, Tanaka T, Nangaku M. Role of hypoxia in progressive chronic kidney disease and implications for therapy [J]. Curr Opin Nephrol Hypertens, 2014, 23(2): 161-168.
[22]
Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis [J]. Kidney Int, 2012, 81(5): 442-448.
[23]
Wei Q, Liu Y, Liu P, et al. MicroRNA-489 induction by hypoxia-inducible factor-1 protects against ischemic kidney injury [J]. J Am Soc Nephrol, 2016, 27(9): 2784-2796.
[24]
Wei Q, Sun H, Song S, et al. MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury [J]. J Clin Invest, 2018, 128(12): 5448-5464.
[25]
Song N, Zhang T, Xu X, et al. miR-21 protects against ischemia/reperfusion-induced acute kidney injury by preventing epithelial cell apoptosis and inhibiting dendritic cell maturation [J]. Front Physiol, 2018, 9: 790.
[26]
Bhatt K, Wei Q, Pabla N, et al. MicroRNA-687 induced by hypoxia-inducible factor-1 targets phosphatase and tensin homolog in renal ischemia-reperfusion injury [J]. J Am Soc Nephrol, 2015, 26(7): 1588-1596.
[27]
Gewin LS. Renal fibrosis: primacy of the proximal tubule [J]. Matrix Biol, 2018, 68-69: 248-262.
[28]
Venkatachalam MA, Weinberg JM, Kriz W, et al. Failed tubule recovery, AKI-CKD transition, and kidney disease progression [J]. J Am Soc Nephrol, 2015, 26(8): 1765-1776.
[29]
Li ZL, Lv LL, Wang B, et al. The dose-dependent biphasic effect of MK-8617 on tubulointerstitial fibrosis is mediated by KLF5 regulating pathway [J]. FASEB, 2019, 33(11): 12630-12643.
[30]
Kapitsinou PP, Sano H, Michael M, et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury [J]. J Clin Invest, 2014, 124(6): 2396-2409.
[31]
Kapitsinou PP, Jaffe J, Michael M, et al. Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury [J]. Am J Physiol Ren Physiol, 2012, 302(9): F1172-F1179.
[32]
Yu X, Fang Y, Liu H, et al. The balance of beneficial and deleterious effects of hypoxia-inducible factor activation by prolyl hydroxylase inhibitor in rat remnant kidney depends on the timing of administration [J]. Nephrol Dial Transplant, 2012, 27(8): 3110-3119.
[33]
Liu J, Wei Q, Guo C, et al. Hypoxia HIF and associated signaling networks in chronic kidney disease [J]. Int J Mol Sci, 2017, 18(5): 950.
[34]
Conde E, Gimenez-Moyano S, Martin-Gomez L, et al. HIF-1α induction during reperfusion avoids maladaptive repair after renal ischemia/reperfusion involving miR127-3p [J]. Sci Rep, 2017, 7: 41099.
[35]
Biggar P, Kim GH. Treatment of renal anemia: erythropoiesis stimulating agents and beyond [J]. Kidney Res Clin Pract, 2017, 36(3): 209-223.
[36]
Tojo Y, Sekine H, Hirano I, et al. Hypoxia signaling cascade for erythropoietin production in hepatocytes [J]. Mol Cell Biol, 2015, 35(15): 2658-2672.
[37]
Maxwell PH, Eckardt KU. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond [J]. Nat Rev Nephrol, 2016, 12(3): 157-168.
[1]
Xu X, Kriegel AJ, Liu Y, et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21 [J]. Kidney Int, 2012, 82(11): 1167-1175.
[2]
Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway [J]. Sci STKE, 2007, 2007(407): cm8.
[3]
Zheng X, Zhai B, Koivunen P, et al. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase [J]. Genes Dev, 2014, 28(13): 1429-1444.
[4]
Nangaku M, Rosenberger C, Heyman SN, et al. Regulation of hypoxia-inducible factor in kidney disease [J]. Clin Exp Pharmacol Physiol, 2013, 40(2): 148-157.
[5]
Ahluwalia A, Tarnawski AS. Critical role of hypoxia sensor--HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing [J]. Curr Med Chem, 2011, 19(1): 90-97.
[6]
Campbell EL, Bruyninckx WJ, Kelly CJ, et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation [J]. Immunity, 2014, 40(1): 66-77.
[7]
Nakamura H, Makino Y, Okamoto K, et al. TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells [J]. J Immunol, 2005, 174(12): 7592-7599.
[8]
Doedens AL, Phan AT, Stradner MH, et al. Hypoxia-inducible factors enhance the effector responses of CD8 T cells to persistent antigen [J]. Nat Immunol, 2013, 14(11): 1173-1182.
[9]
Chan DA, Kawahara TL, Sutphin PD, et al. Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment [J]. Cancer Cell, 2009, 15(6): 527-538.
[38]
Taylor M, Qu A, Anderson ER, et al. Hypoxia-inducible factor-2 alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice [J]. Gastroenterology, 2011, 140(7): 2044-2055.
[10]
Fitzpatrick SF, Fábián Z, Schaible B, et al. Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-kappaB-dependent manner [J]. Biochem Biophys Res Commun, 2016, 474(3): 579-586.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[3] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[4] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[5] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[6] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[7] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[8] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[9] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[10] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[11] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[12] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[13] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
[14] 李宁, 刘言, 林慧庆. 肺移植供肺缺血再灌注损伤的机制及预防[J]. 中华胸部外科电子杂志, 2023, 10(04): 247-256.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要