切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2020, Vol. 09 ›› Issue (03) : 120 -123. doi: 10.3877/cma.j.issn.2095-3216.2020.03.006

所属专题: 文献

综述

HIF-PHD轴在肾脏缺血再灌注损伤中的作用
闫景瑶1, 邵凤民2, 赵焕焕3, 韩秋霞3, 丁潇楠3, 耿文佳4, 朱晗玉3,()   
  1. 1. 100853 北京,解放军总医院第一医学中心肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室;450052 河南,郑州大学河南省人民医院肾脏病科、郑州大学医学科学院
    2. 450052 河南,郑州大学河南省人民医院肾脏病科、郑州大学医学科学院
    3. 100853 北京,解放军总医院第一医学中心肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室
    4. 510000 广州,广州中医药大学第二临床医学院暨广东省中医院
  • 收稿日期:2020-01-02 出版日期:2020-06-28
  • 通信作者: 朱晗玉
  • 基金资助:
    国家自然科学基金(61971441、61671479、81804056); 国家重点研发项目(2016YFC1305500)

The role of the HIF-PHD axis in renal ischemia-reperfusion injury

Jingyao Yan1, Fengmin Shao2, Huanhuan Zhao3, Qiuxia Han3, Xiaonan Ding3, Wenjia Geng4, Hanyu Zhu3,()   

  1. 1. Department of Nephrology, First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853; Department of Nephrology, Henan Provincial People′s Hospital Affiliated to Zhengzhou University, Zhengzhou University Academy of Medical Sciences, Zhengzhou 450052, Henan Province
    2. Department of Nephrology, Henan Provincial People′s Hospital Affiliated to Zhengzhou University, Zhengzhou University Academy of Medical Sciences, Zhengzhou 450052, Henan Province
    3. Department of Nephrology, First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853
    4. Guangdong Provincial Hospital of Traditional Chinese Medicine, Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510000, Guangdong Province; China
  • Received:2020-01-02 Published:2020-06-28
  • Corresponding author: Hanyu Zhu
  • About author:
    Corresponding author: Zhu Hanyu, Email:
引用本文:

闫景瑶, 邵凤民, 赵焕焕, 韩秋霞, 丁潇楠, 耿文佳, 朱晗玉. HIF-PHD轴在肾脏缺血再灌注损伤中的作用[J/OL]. 中华肾病研究电子杂志, 2020, 09(03): 120-123.

Jingyao Yan, Fengmin Shao, Huanhuan Zhao, Qiuxia Han, Xiaonan Ding, Wenjia Geng, Hanyu Zhu. The role of the HIF-PHD axis in renal ischemia-reperfusion injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2020, 09(03): 120-123.

缺血再灌注是急性肾损伤(AKI)中肾功能迅速恶化的主要原因。在AKI过程中,HIF发挥重要作用。本文就HIF-PHD轴的概念、调节机制及其在肾损伤缺血再灌注中的作用进行综述,以更好了解急性肾损伤的保护机制,寻找新的治疗靶点和肾脏保护方法。

Ischemia reperfusion is the main cause of rapid deterioration of renal function in acute kidney injury (AKI). It has been known that hypoxia-inducible factor (HIF) plays an important role in the process of AKI. This paper reviewed the conception, regulatory mechanism, and the role of the HIF-prolyl hydroxylase (PHD) axis in renal ischemia-reperfusion injury, so as to better understand the mechanism of AKI, helping to find new therapeutic targets and renal protection methods.

[11]
Scholz CC, Cavadas MA, Tambuwala MM, et al. Regulation of IL-1b-induced NF-kappaB by hydroxylases links key hypoxic and inflammatory signaling pathways [J]. Proc Natl Acad Sci USA, 2013, 110(46): 18490-18495.
[12]
Deschoemaeker S, Di Conza G, Lilla S, et al. PHD1 regulates p53-mediated colorectal cancer chemoresistance [J]. EMBO Mol Med, 2015, 7(10): 1350-1365.
[13]
Kapitsinou PP, Sano H, Michael M,et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury [J]. J Clin Invest, 2014, 124(6): 2396-2409.
[14]
Zuk A, Bonventre JV. Acute kidney injury [J]. Ann Rev Med, 2016, 67: 293-307.
[15]
Sendoel A, Hengartner MO. Apoptotic cell death under hypoxia [J]. Physiology (Bethesda), 2014, 29(3): 168-176.
[16]
Moore E, Bellomo R. Erythropoietin (EPO) in acute kidney injury [J]. Ann Intensive Care, 2011, 1(1): 3.
[17]
Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1 [J]. Nat Med, 2004, 10(8): 858-864.
[18]
Koshiji M, Huang LE. Dynamic balancing of the dual nature of HIF-1α for cell survival [J]. Cell Cycle, 2004, 3(7): 853-854.
[19]
Kumar S, Vaidya M. Hypoxia inhibits mesenchymal stem cell proliferation through HIF1α-dependent regulation of P27 [J]. Mol Cell Biochem, 2016, 415(1-2): 29-38.
[20]
Xu X, Song N, Zhang X, et al. Renal protection mediated by hypoxia inducible factor-1α depends on proangiogenesis function of miR-21 by targeting thrombospondin [J]. Transplantation, 2017, 101(8): 1811-1819.
[21]
Shoji K, Tanaka T, Nangaku M. Role of hypoxia in progressive chronic kidney disease and implications for therapy [J]. Curr Opin Nephrol Hypertens, 2014, 23(2): 161-168.
[22]
Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis [J]. Kidney Int, 2012, 81(5): 442-448.
[23]
Wei Q, Liu Y, Liu P, et al. MicroRNA-489 induction by hypoxia-inducible factor-1 protects against ischemic kidney injury [J]. J Am Soc Nephrol, 2016, 27(9): 2784-2796.
[24]
Wei Q, Sun H, Song S, et al. MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury [J]. J Clin Invest, 2018, 128(12): 5448-5464.
[25]
Song N, Zhang T, Xu X, et al. miR-21 protects against ischemia/reperfusion-induced acute kidney injury by preventing epithelial cell apoptosis and inhibiting dendritic cell maturation [J]. Front Physiol, 2018, 9: 790.
[26]
Bhatt K, Wei Q, Pabla N, et al. MicroRNA-687 induced by hypoxia-inducible factor-1 targets phosphatase and tensin homolog in renal ischemia-reperfusion injury [J]. J Am Soc Nephrol, 2015, 26(7): 1588-1596.
[27]
Gewin LS. Renal fibrosis: primacy of the proximal tubule [J]. Matrix Biol, 2018, 68-69: 248-262.
[28]
Venkatachalam MA, Weinberg JM, Kriz W, et al. Failed tubule recovery, AKI-CKD transition, and kidney disease progression [J]. J Am Soc Nephrol, 2015, 26(8): 1765-1776.
[29]
Li ZL, Lv LL, Wang B, et al. The dose-dependent biphasic effect of MK-8617 on tubulointerstitial fibrosis is mediated by KLF5 regulating pathway [J]. FASEB, 2019, 33(11): 12630-12643.
[30]
Kapitsinou PP, Sano H, Michael M, et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury [J]. J Clin Invest, 2014, 124(6): 2396-2409.
[31]
Kapitsinou PP, Jaffe J, Michael M, et al. Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury [J]. Am J Physiol Ren Physiol, 2012, 302(9): F1172-F1179.
[32]
Yu X, Fang Y, Liu H, et al. The balance of beneficial and deleterious effects of hypoxia-inducible factor activation by prolyl hydroxylase inhibitor in rat remnant kidney depends on the timing of administration [J]. Nephrol Dial Transplant, 2012, 27(8): 3110-3119.
[33]
Liu J, Wei Q, Guo C, et al. Hypoxia HIF and associated signaling networks in chronic kidney disease [J]. Int J Mol Sci, 2017, 18(5): 950.
[34]
Conde E, Gimenez-Moyano S, Martin-Gomez L, et al. HIF-1α induction during reperfusion avoids maladaptive repair after renal ischemia/reperfusion involving miR127-3p [J]. Sci Rep, 2017, 7: 41099.
[35]
Biggar P, Kim GH. Treatment of renal anemia: erythropoiesis stimulating agents and beyond [J]. Kidney Res Clin Pract, 2017, 36(3): 209-223.
[36]
Tojo Y, Sekine H, Hirano I, et al. Hypoxia signaling cascade for erythropoietin production in hepatocytes [J]. Mol Cell Biol, 2015, 35(15): 2658-2672.
[37]
Maxwell PH, Eckardt KU. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond [J]. Nat Rev Nephrol, 2016, 12(3): 157-168.
[1]
Xu X, Kriegel AJ, Liu Y, et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21 [J]. Kidney Int, 2012, 82(11): 1167-1175.
[2]
Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway [J]. Sci STKE, 2007, 2007(407): cm8.
[3]
Zheng X, Zhai B, Koivunen P, et al. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase [J]. Genes Dev, 2014, 28(13): 1429-1444.
[4]
Nangaku M, Rosenberger C, Heyman SN, et al. Regulation of hypoxia-inducible factor in kidney disease [J]. Clin Exp Pharmacol Physiol, 2013, 40(2): 148-157.
[5]
Ahluwalia A, Tarnawski AS. Critical role of hypoxia sensor--HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing [J]. Curr Med Chem, 2011, 19(1): 90-97.
[6]
Campbell EL, Bruyninckx WJ, Kelly CJ, et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation [J]. Immunity, 2014, 40(1): 66-77.
[7]
Nakamura H, Makino Y, Okamoto K, et al. TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells [J]. J Immunol, 2005, 174(12): 7592-7599.
[8]
Doedens AL, Phan AT, Stradner MH, et al. Hypoxia-inducible factors enhance the effector responses of CD8 T cells to persistent antigen [J]. Nat Immunol, 2013, 14(11): 1173-1182.
[9]
Chan DA, Kawahara TL, Sutphin PD, et al. Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment [J]. Cancer Cell, 2009, 15(6): 527-538.
[38]
Taylor M, Qu A, Anderson ER, et al. Hypoxia-inducible factor-2 alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice [J]. Gastroenterology, 2011, 140(7): 2044-2055.
[10]
Fitzpatrick SF, Fábián Z, Schaible B, et al. Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-kappaB-dependent manner [J]. Biochem Biophys Res Commun, 2016, 474(3): 579-586.
[1] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[2] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[3] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[4] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[5] 王雪玲, 曹欢, 顾劲扬. 肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 247-250.
[6] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[7] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[8] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[9] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[10] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[11] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[12] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[13] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
阅读次数
全文


摘要